A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 40227
(http://iopscience.iop.org/1751-8121/40/2/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.109
The article was downloaded on 03/06/2010 at 05:10

Please note that terms and conditions apply.

A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations

Sheng Zhang ${ }^{1}$ and Tie-Cheng Xia ${ }^{2}$
${ }^{1}$ Department of Mathematics, Bohai University, Jinzhou 121000, People's Republic of China
${ }^{2}$ Department of Mathematics, Shanghai University, Shanghai 200444, People's Republic of China

E-mail: zhshaeng@yahoo.com.cn
Received 4 July 2006, in final form 17 November 2006
Published 12 December 2006
Online at stacks.iop.org/JPhysA/40/227

Abstract

A generalized auxiliary equation method is proposed to construct more general exact solutions of nonlinear partial differential equations. With the aid of symbolic computation, we choose the ($2+1$)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations to illustrate the validity and advantages of the method. As a result, many new and more general exact non-travelling wave and coefficient function solutions are obtained including soliton-like solutions, triangular-like solitions, single and combined non-degenerate Jacobi elliptic doubly-like periodic solutions, and Weierstrass elliptic doubly-like periodic solutions.

PACS numbers: 02.30.Jr, 04.20.Jb, 05.45.Yv

1. Introduction

It is well known that nonlinear complex physical phenomena are related to nonlinear partial differential equations (NLPDEs) which are involved in many fields from physics to biology, chemistry, mechanics, etc. As mathematical models of the phenomena, the investigation of exact solutions of NLPDEs will help one to understand these phenomena better. With the development of soliton theory, various methods for obtaining exact solutions of NLPDEs have been presented, such as the inverse scattering method [1], Hirota's bilinear method [2], Bäcklund transformation [3], Painlevé expansion [4], tanh function method [5, 6], sine-cosine method [7], homogenous balance method [8], homotopy perturbation method [9], variational method [10], asymptotic methods [11], non-perturbative methods [12], Exp-function method [13], Adomian Pade approximation [14], Jacobi elliptic function expansion method [15], F-expansion method [16, 17], Weierstrass semi-rational expansion method [18], unified
rational expansion method [19], algebraic method [20-23], auxiliary equation method [24-27] and so on. Recently, Sirendaoreji [28] and Huang et al [29], respectively, proposed a new auxiliary equation method by introducing a new first-order nonlinear ordinary differential equation with six-degree nonlinear term and its solutions to construct exact travelling wave solutions of NLPDEs in a unified way.

The present paper is motivated by the desire to generalize the work done in [20-29] to construct new and more general exact solutions which contain not only the results obtained by using the methods in [20-29] but also a series of new and more general exact solutions, in which the restriction on ξ as merely a linear function and the restriction on coefficients being constants are removed. For illustration, we apply this method to the ($2+1$)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations and successfully obtain many new and more general exact solutions.

The rest of this paper is organized as follows: in section 2, we give the description of the generalized auxiliary equation method; in section 3, we apply this method to the (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations; in section 4, some conclusions are given.

2. A generalized auxiliary equation method

In this section, we outline a generalized auxiliary equation method. For a given NLPDE with independent variables $x=\left(t, x_{1}, x_{2}, \ldots, x_{m}\right)$ and dependent variable u :
$F\left(u, u_{t}, u_{x_{1}}, u_{x_{2}}, \ldots, u_{x_{m}}, u_{x_{1} t}, u_{x_{2} t} \ldots, u_{x_{m} t}, u_{t t}, u_{x_{1} x_{1}}, u_{x_{2} x_{2}}, \ldots, u_{x_{m} x_{m}}, \ldots\right)=0$,
we seek its solutions in the more general form:

$$
\begin{equation*}
u=a_{0}+\sum_{i=1}^{n}\left\{a_{i} \phi^{-i}(\xi)+b_{i} \phi^{i}(\xi)+c_{i} \phi^{i-1}(\xi) \phi^{\prime}(\xi)+d_{i} \phi^{-i}(\xi) \phi^{\prime}(\xi)\right\} \tag{2}
\end{equation*}
$$

with $\phi(\xi)$ satisfying the new auxiliary equation:
$\phi^{\prime 2}(\xi)=\left(\frac{\mathrm{d} \phi}{\mathrm{d} \xi}\right)^{2}=h_{0}+h_{1} \phi(\xi)+h_{2} \phi^{2}(\xi)+h_{3} \phi^{3}(\xi)+h_{4} \phi^{4}(\xi)+h_{5} \phi^{5}(\xi)+h_{6} \phi^{6}(\xi)$,
where $a_{0}=a_{0}(x), a_{i}=a_{i}(x), b_{i}=b_{i}(x), c_{i}=c_{i}(x), d_{i}=d_{i}(x)(i=1,2, \ldots, n)$ and $\xi=\xi(x)$ are functions to be determined, $h_{j}(j=0,1,2 \ldots, 6)$ are real constants. To determine u explicitly, we take the following four steps.
Step 1 . Determine the integer n. Substituting (2) along with (3) into equation (1) and balancing the highest order partial derivative with the nonlinear terms in equation (1), we then obtain the value of n. For example, in the case of KdV equation:

$$
\begin{equation*}
u_{t}+6 u u_{x}+u_{x x x}=0 \tag{4}
\end{equation*}
$$

we have $n=4$.
Step 2. Derive a system of equations. Substituting (2) given the value of n obtained in step 1 along with (3) into equation (1), collecting coefficients of $\phi^{j}(\xi) \phi^{\prime l}(\xi)(l=0,1 ; j=$ $0, \pm 1, \pm 2, \ldots)$, then setting each coefficient to zero, we can derive a set of over-determined partial differential equations for $a_{0}, a_{i}, b_{i}, c_{i}, d_{i}$ and ξ.

Step 3. Solve the system of equations. Solving the system of over-determined partial differential equations obtained in step 2 by use of Mathematica, we can obtain the explicit expressions for $a_{0}, a_{i}, b_{i}, c_{i}, d_{i}$ and ξ.
Step 4. Obtain exact solutions. By using the results obtained in the above steps, we can derive a series of fundamental solutions of equation (1) depending on the solution $\phi(\xi)$ of equation (3).

By choosing the different values of $h_{j}(j=0,1,2 \ldots, 6)$, equation (3) has many kinds of special solutions. Some of them are listed in [22] under the condition $h_{5}=h_{6}=0$. In order to find the solutions with $h_{6} \neq 0$ of equation (3) conveniently, we set

$$
\begin{equation*}
\phi(\xi)=\varphi^{1 / 2}(\xi) \tag{5}
\end{equation*}
$$

then equation (3) becomes
$\varphi^{\prime 2}(\xi)=\left(\frac{\mathrm{d} \varphi}{\mathrm{d} \xi}\right)^{2}=4\left(h_{0} \varphi(\xi)+h_{1} \varphi^{3 / 2}(\xi)\right.$

$$
\begin{equation*}
\left.+h_{2} \varphi^{2}(\xi)+h_{3} \varphi^{5 / 2}(\xi)+h_{4} \varphi^{3}(\xi)+h_{5} \varphi^{7 / 2}(\xi)+h_{6} \varphi^{4}(\xi)\right) \tag{6}
\end{equation*}
$$

With the aid of equations (5) and (6), we can easily find some special solutions with $h_{6} \neq 0$ of equation (3), which are listed as follows.
Case I. Suppose that $h_{1}=h_{3}=h_{5}=0, h_{0}=\frac{8 h_{2}^{2}}{27 h_{4}}$ and $h_{6}=\frac{h_{4}^{2}}{4 h_{2}}$.
(i) If $h_{2}<0$ and $h_{4}>0$, then equation (3) has the following solutions (here and thereafter $\varepsilon= \pm 1)$:

$$
\begin{align*}
& \phi(\xi)=\left\{-\frac{8 h_{2} \tanh ^{2}\left(\varepsilon \sqrt{-h_{2} / 3}\left(\xi+\xi_{0}\right)\right)}{3 h_{4}\left[3+\tanh ^{2}\left(\varepsilon \sqrt{-h_{2} / 3}\left(\xi+\xi_{0}\right)\right)\right]}\right\}^{1 / 2}, \tag{7}\\
& \phi(\xi)=\left\{-\frac{8 h_{2} \operatorname{coth}^{2}\left(\varepsilon \sqrt{-h_{2} / 3}\left(\xi+\xi_{0}\right)\right)}{3 h_{4}\left[3+\operatorname{coth}^{2}\left(\varepsilon \sqrt{-h_{2} / 3}\left(\xi+\xi_{0}\right)\right)\right]}\right\}^{1 / 2} . \tag{8}
\end{align*}
$$

(ii) If $h_{2}>0$ and $h_{4}<0$, then equation (3) has the following solutions:

$$
\begin{align*}
& \phi(\xi)=\left\{\frac{8 h_{2} \tan ^{2}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)}{3 h_{4}\left[3-\tan ^{2}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)\right]}\right\}^{1 / 2}, \tag{9}\\
& \phi(\xi)=\left\{\frac{8 h_{2} \cot ^{2}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)}{3 h_{4}\left[3-\cot ^{2}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)\right]}\right\}^{1 / 2} . \tag{10}
\end{align*}
$$

Case II. Suppose that $h_{0}=h_{1}=h_{3}=h_{5}=0$ and $h_{6} \neq 0$.
(i) If $h_{2}>0$, then equation (3) has the following solutions:

$$
\begin{align*}
& \phi(\xi)=\left\{-\frac{h_{2} h_{4} \operatorname{sech}^{2}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{h_{4}^{2}-h_{2} h_{6}\left[1+\varepsilon \tanh \left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right]^{2}}\right\}^{1 / 2}, \tag{11}\\
& \phi(\xi)=\left\{\frac{h_{2} h_{4} \operatorname{csch}^{2}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{h_{4}^{2}-h_{2} h_{6}\left[1+\varepsilon \operatorname{coth}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right]^{2}}\right\}^{1 / 2} \tag{12}
\end{align*}
$$

(ii) If $h_{2}>0$ and $h_{6}>0$, then equation (3) has the following solutions:

$$
\begin{align*}
& \phi(\xi)=\left\{-\frac{h_{2} \operatorname{sech}^{2}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{h_{4}+2 \varepsilon \sqrt{h_{2} h_{6}} \tanh \left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2} \tag{13}\\
& \phi(\xi)=\left\{\frac{h_{2} \operatorname{csch}^{2}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{h_{4}+2 \varepsilon \sqrt{h_{2} h_{6}} \operatorname{coth}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2} \tag{14}
\end{align*}
$$

(iii) If $h_{2}<0$ and $h_{6}>0$, then equation (3) has the following solutions:

$$
\begin{align*}
& \phi(\xi)=\left\{-\frac{h_{2} \sec ^{2}\left(\sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}{h_{4}+2 \varepsilon \sqrt{-h_{2} h_{6}} \tan \left(\sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2}, \tag{15}\\
& \phi(\xi)=\left\{-\frac{h_{2} \csc ^{2}\left(\sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}{h_{4}+2 \varepsilon \sqrt{-h_{2} h_{6}} \cot \left(\sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2} . \tag{16}
\end{align*}
$$

Case III. Suppose that $h_{0}=h_{1}=h_{3}=h_{5}=0, h_{6} \neq 0$ and $h_{4}^{2}-4 h_{2} h_{6}>0$.
(i) If $h_{2}>0$, then equation (3) has the following solution:

$$
\begin{equation*}
\phi(\xi)=\left\{\frac{2 h_{2} \operatorname{sech}\left(2 \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{\varepsilon \sqrt{h_{4}^{2}-4 h_{2} h_{6}}-h_{4} \operatorname{sech}\left(2 \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2} \tag{17}
\end{equation*}
$$

(ii) If $h_{2}<0$, then equation (3) has the following solutions:

$$
\begin{align*}
& \phi(\xi)=\left\{\frac{2 h_{2} \sec \left(2 \sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}{\varepsilon \sqrt{h_{4}^{2}-4 h_{2} h_{6}}-h_{4} \sec \left(2 \sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2}, \tag{18}\\
& \phi(\xi)=\left\{\frac{2 h_{2} \csc \left(2 \sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}{\varepsilon \sqrt{h_{4}^{2}-4 h_{2} h_{6}}-h_{4} \csc \left(2 \sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2} . \tag{19}
\end{align*}
$$

(iii) If $h_{2}>0, h_{4}<0$ and $h_{6}<0$, then equation (3) has the following solutions:

$$
\begin{align*}
& \phi(\xi)=\left\{\frac{2 h_{2} \operatorname{sech}^{2}\left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{2 \sqrt{h_{4}^{2}-4 h_{2} h_{6}}-\left(\sqrt{h_{4}^{2}-4 h_{2} h_{6}}+h_{4}\right) \operatorname{sech}^{2}\left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2}, \tag{20}\\
& \phi(\xi)=\left\{\frac{2 h_{2} \operatorname{csch}^{2}\left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{2 \sqrt{h_{4}^{2}-4 h_{2} h_{6}}+\left(\sqrt{h_{4}^{2}-4 h_{2} h_{6}}-h_{4}\right) \operatorname{csch}^{2}\left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2} . \tag{21}
\end{align*}
$$

(iv) If $h_{2}<0, h_{4}>0$ and $h_{6}<0$, then equation (3) has the following solutions:

$$
\begin{align*}
& \phi(\xi)=\left\{\frac{-2 h_{2} \sec ^{2}\left(\varepsilon \sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}{2 \sqrt{h_{4}^{2}-4 h_{2} h_{6}}-\left(\sqrt{h_{4}^{2}-4 h_{2} h_{6}}-h_{4}\right) \sec ^{2}\left(\varepsilon \sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2}, \tag{22}\\
& \phi(\xi)=\left\{\frac{2 h_{2} \csc ^{2}\left(\varepsilon \sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}{2 \sqrt{h_{4}^{2}-4 h_{2} h_{6}}-\left(\sqrt{h_{4}^{2}-4 h_{2} h_{6}}+h_{4}\right) \csc ^{2}\left(\varepsilon \sqrt{-h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2} . \tag{23}
\end{align*}
$$

Case IV. Suppose that $h_{0}=h_{1}=h_{3}=h_{5}=0, h_{6} \neq 0$ and $h_{4}^{2}-4 h_{2} h_{6}<0$.
(1) If $h_{2}>0$, then equation (3) has the following solution:

$$
\begin{equation*}
\phi(\xi)=\left\{\frac{2 h_{2} \operatorname{csch}\left(2 \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{\varepsilon \sqrt{4 h_{2} h_{6}-h_{4}^{2}}-h_{4} \operatorname{csch}\left(2 \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}\right\}^{1 / 2} \tag{24}
\end{equation*}
$$

Case V. Suppose that $h_{0}=h_{1}=h_{3}=h_{5}=0, h_{6} \neq 0$ and $h_{4}^{2}-4 h_{2} h_{6}=0$.
(i) If $h_{2}>0$, then equation (3) has the following solutions:

$$
\begin{align*}
& \phi(\xi)=\left\{-\frac{h_{2}}{h_{4}}\left[1+\varepsilon \tanh \left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right]\right\}^{1 / 2} \tag{25}\\
& \phi(\xi)=\left\{-\frac{h_{2}}{h_{4}}\left[1+\varepsilon \operatorname{coth}\left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right]\right\}^{1 / 2} \tag{26}
\end{align*}
$$

3. Application of the method

In this section, we would like to use our method to obtain new and more general exact solutions of the (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations:

$$
\begin{align*}
& u_{t}-u_{x x x}-3(u v)_{x}=0, \tag{27}\\
& u_{x}-v_{y}=0 . \tag{28}
\end{align*}
$$

By using a generalized algebraic method, Chen et al obtained some soliton-like solutions and triangular-like solitions of equations (27) and (28) in [21].

According to step 1 , we get $n=4$ for u and v. We assume that equations (27) and (28) have the following formal solutions.

$$
\begin{align*}
u= & a_{0}+a_{1} \phi^{-1}(\xi)+a_{2} \phi^{-2}(\xi)+a_{3} \phi^{-3}(\xi)+a_{4} \phi^{-4}(\xi)+b_{1} \phi(\xi)+b_{2} \phi^{2}(\xi)+b_{3} \phi^{3}(\xi) \\
& +b_{4} \phi^{4}(\xi)+c_{1} \phi^{\prime}(\xi)+c_{2} \phi(\xi) \phi^{\prime}(\xi)+c_{3} \phi^{2}(\xi) \phi^{\prime}(\xi)+c_{4} \phi^{3}(\xi) \phi^{\prime}(\xi)+d_{1} \phi^{-1}(\xi) \phi^{\prime}(\xi) \\
& +d_{2} \phi^{-2}(\xi) \phi^{\prime}(\xi)+d_{3} \phi^{-3}(\xi) \phi^{\prime}(\xi)+d_{4} \phi^{-4}(\xi) \phi^{\prime}(\xi), \tag{29}\\
v= & A_{0}+A_{1} \phi^{-1}(\xi)+A_{2} \phi^{-2}(\xi)+A_{3} \phi^{-3}(\xi)+A_{4} \phi^{-4}(\xi)+B_{1} \phi(\xi)+B_{2} \phi^{2}(\xi)+B_{3} \phi^{3}(\xi) \\
& +B_{4} \phi^{4}(\xi)+C_{1} \phi^{\prime}(\xi)+C_{2} \phi(\xi) \phi^{\prime}(\xi)+C_{3} \phi^{2}(\xi) \phi^{\prime}(\xi)+C_{4} \phi^{3}(\xi) \phi^{\prime}(\xi)+D_{1} \phi^{-1}(\xi) \phi^{\prime}(\xi) \\
& +D_{2} \phi^{-2}(\xi) \phi^{\prime}(\xi)+D_{3} \phi^{-3}(\xi) \phi^{\prime}(\xi)+D_{4} \phi^{-4}(\xi) \phi^{\prime}(\xi), \tag{30}
\end{align*}
$$

where $a_{0}=a_{0}(y, t), a_{i}=a_{i}(y, t), b_{i}=b_{i}(y, t), c_{i}=c_{i}(y, t), d_{i}=d_{i}(y, t), A_{0}=A_{0}(y, t)$, $A_{i}=A_{i}(y, t), B_{i}=B_{i}(y, t), C_{i}=C_{i}(y, t), D_{i}=D_{i}(y, t)(i=1,2,3,4), \xi=\rho \omega+\eta$, $\rho=\rho(x), \omega=\omega(y, t), \eta=\eta(y, t)$.

With the aid of Mathematica, substituting (29) and (30) along with (3) into equations (27) and (28), then setting each coefficient of $\phi^{j}(\xi) \phi^{\prime l}(\xi)(l=0,1 ; j= \pm 1, \pm 2, \ldots)$ to zero, we get a set of over-determined partial differential equations for $a_{0}, a_{i}, b_{i}, c_{i}, d_{i}, A_{0}, A_{i}, B_{i}$, $C_{i}, D_{i}, \rho, \omega$ and η as follows:

$$
\begin{aligned}
& -30 h_{6} \omega \rho^{\prime}\left(b_{4} C_{4}+B_{4} c_{4}+16 h_{6} c_{4} \omega^{2} \rho^{\prime 2}\right)=0, \\
& 24 h_{0} \omega \rho^{\prime}\left(a_{4} D_{4}+A_{4} d_{4}\right)=0, \quad d_{1, t}=0, \quad D_{1, y}=0, \\
& 15 \omega \rho^{\prime}\left[a_{2} A_{3}+A_{2} a_{3}+a_{1} A_{4}+A_{1} a_{4}+h_{0}\left(d_{1} D_{4}+D_{1} d_{4}+d_{2} D_{3}+D_{2} d_{3}\right)\right. \\
& \left.\quad+h_{1}\left(d_{2} D_{4}+D_{2} d_{4}+d_{3} D_{3}\right)+h_{2}\left(d_{3} D_{4}+D_{3} d_{4}\right)\right] \\
& \quad+30 \omega^{3} \rho^{\prime 3}\left(2 h_{0} a_{3}+3 h_{1} a_{4}\right)-60 h_{0} d_{4}^{2} \omega^{2} \rho^{\prime} \rho^{\prime \prime}=0 \\
& -\frac{1}{2} \omega \rho^{\prime}\left(h_{1} d_{1}+2 h_{2} d_{2}+3 h_{3} d_{3}+4 h_{4} d_{4}\right) \\
& \quad+\frac{1}{2}\left(\rho \omega_{y}+\eta_{y}\right)\left(h_{1} D_{1}+2 h_{2} D_{2}+3 h_{3} D_{3}+4 h_{4} D_{4}\right)-A_{1, y}=0, \\
& -24 h_{6} \omega \rho^{\prime}\left(b_{2} C_{4}+B_{2} c_{4}+b_{4} C_{2}+B_{4} c_{2}\right)-\frac{57}{2} h_{5} \omega \rho^{\prime}\left(b_{4} C_{4}+B_{4} c_{4}\right) \\
& \\
& \quad+\frac{15}{2} h_{5} \omega^{3} \rho^{\prime 3}\left(42 h_{6} c_{3}+107 h_{5} c_{4}\right)=0,
\end{aligned}
$$

$$
\begin{aligned}
&-24 h_{6} \omega \rho^{\prime}\left(b_{2}\right. C_{4} \\
&\left.+B_{2} c_{4}+b_{3} C_{3}+B_{3} c_{3}+b_{4} C_{2}+B_{4} c_{2}\right) \\
&-\frac{51}{2} h_{5} \omega \rho^{\prime}\left(b_{3} C_{4}+B_{3} c_{4}+b_{4} C_{3}+B_{4} c_{3}\right) \\
&-27 h_{4} \omega \rho^{\prime}\left(b_{4} C_{4}+B_{4} c_{4}\right)+\frac{1}{4} \omega^{3} \rho^{\prime 3}\left(768 h_{6}^{2} c_{2}+2054 h_{5} h_{6} c_{3}\right. \\
&\left.+1309 h_{5}^{2} c_{4}+2688 h_{4} h_{6} c_{4}\right)=0, \\
&-\frac{1}{2} \omega \rho^{\prime}\left(10 h_{6} c_{3}\right.\left.+11 h_{5} c_{4}\right)-\frac{1}{2}\left(\rho \omega_{y}+\eta_{y}\right)\left(10 h_{6} C_{3}+11 h_{5} C_{4}\right)=0, \\
& 4 b_{4} \omega \rho^{\prime}-C_{4, y}-4 B_{4} \rho \omega_{y}-4 B_{4} \eta_{y}=0, \quad-33 h_{6} c_{4} C_{4} \omega \rho^{\prime}=0, \\
& 6 h_{6}\left(c_{4} \omega \rho^{\prime}-\right.\left.C_{4} \rho \omega_{y}-C_{4} \eta_{y}\right)=0, \\
&-4\left(a_{4} \omega \rho^{\prime}-A_{4} \rho \omega_{y}-A_{4} \eta_{y}\right)=0,
\end{aligned}
$$

there are totally 66 equations in the set of over-determined partial differential equations, just some simple and central equations are shown here for convenience. Solving the system of over-determined partial differential equations by use of Mathematica, we obtain the following results.

Case 1.
$a_{0}=\frac{\left(-k_{1}^{2} k_{3}^{2} h_{2} \pm 6 k_{1}^{2} k_{3}^{2} \sqrt{h_{0} h_{4}}-3 k_{4}\right) f_{1}(y)}{3 k_{1} k_{3}}, \quad a_{1}=-\frac{k_{1} k_{3} h_{1} f_{1}(y)}{2}$,
$a_{2}=-k_{1} k_{3} h_{0} f_{1}(y)$,
$a_{3}=0, \quad a_{4}=0, \quad b_{1}=-\frac{k_{1} k_{3} h_{3} f_{1}(y)}{2}, \quad b_{2}=-k_{1} k_{3} h_{4} f_{1}(y)$,
$b_{3}=0, \quad b_{4}=0$,
$c_{1}= \pm k_{1} k_{3} \sqrt{h_{4}} f_{1}(y), \quad c_{2}=0, \quad c_{3}=0, \quad c_{4}=0, \quad d_{1}=0$,
$d_{2}= \pm k_{1} k_{3} \sqrt{h_{0}} f_{1}(y)$,
$d_{3}=0, \quad d_{4}=0, \quad A_{0}=\frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}, \quad A_{1}=-\frac{k_{1}^{2} k_{3}^{2} h_{1}}{2}$,

$$
\begin{equation*}
A_{2}=-k_{1}^{2} k_{3}^{2} h_{0}, \quad A_{3}=0 \tag{34}
\end{equation*}
$$

$A_{4}=0, \quad B_{1}=-\frac{k_{1}^{2} k_{3}^{2} h_{3}}{2}, \quad B_{2}=-k_{1}^{2} k_{3}^{2} h_{4}, \quad B_{3}=0$,
$B_{4}=0, \quad C_{1}= \pm k_{1}^{2} k_{3}^{2} \sqrt{h_{4}}$,
$C_{2}=0, \quad C_{3}=0, \quad C_{4}=0, \quad D_{1}=0, \quad D_{2}= \pm k_{1}^{2} k_{3}^{2} \sqrt{h_{0}}$,
$D_{3}=0, \quad D_{4}=0$,
$\rho=k_{1} x+k_{2}, \quad \omega=k_{3}, \quad \eta=\int f_{1}(y) \mathrm{d} y+f_{2}(t), \quad h_{5}=0$,
$h_{6}=0, \quad \pm h_{3} \sqrt{h_{0}}-h_{1} \sqrt{h_{4}}=0$,
where $f_{1}(y)$ and $f_{2}(t)$ are arbitrary functions of y and t respectively, $f_{2}^{\prime}(t)=\mathrm{d} f_{2}(t) / \mathrm{d} t, k_{1}$ and k_{3} are nonzero constants, k_{2} and k_{4} are arbitrary constants. The sign ' \pm ' in C_{1} and D_{2} means that all possible combinations of ' + ' and ' - ' can be taken. If the same sign is used in C_{1} and D_{2}, then ' + ' must be used in a_{0} and ' - ' must be used in (37). If different signs are
used in C_{1} and D_{2}, then ' - ' must be used in a_{0} and ' + ' must be used in (37). Furthermore, the same sign must be used in c_{1} and C_{1}. Also the same sign must be use in d_{2} and D_{2}. Hereafter, the sign ' \pm ' always stands for this meaning in the similar circumstances.

Case 2.

$$
\begin{align*}
& a_{0}=-\frac{\left(3 k_{4}+k_{1}^{2} k_{3}^{2} h_{2}\right) f_{1}(y)}{3 k_{1} k_{3}}, \quad a_{1}=0, \quad a_{2}=0, \quad a_{3}=0, \quad a_{4}=0, \\
& b_{1}=-\frac{k_{1} k_{3} h_{3} f_{1}(y)}{2}, \tag{38}
\end{align*}
$$

$b_{2}=-k_{1} k_{3} h_{4} f_{1}(y), \quad b_{3}=0, \quad b_{4}=0, \quad c_{1}= \pm k_{1} k_{3} \sqrt{h_{4}} f_{1}(y)$,

$$
\begin{equation*}
c_{2}=0, \quad c_{3}=0 \tag{39}
\end{equation*}
$$

$c_{4}=0, \quad d_{1}=0, \quad d_{2}=0, \quad d_{3}=0, \quad d_{4}=0$,

$$
\begin{equation*}
A_{0}=\frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}, \quad A_{1}=0, \quad A_{2}=0 \tag{40}
\end{equation*}
$$

$A_{3}=0, \quad A_{4}=0, \quad B_{1}=-\frac{k_{1}^{2} k_{3}^{2} h_{3}}{2}, \quad B_{2}=-k_{1}^{2} k_{3}^{2} h_{4}, \quad B_{3}=0$,
$B_{4}=0, \quad C_{1}= \pm k_{1}^{2} k_{3}^{2} \sqrt{h_{4}}$,
$C_{2}=0, \quad C_{3}=0, \quad C_{4}=0, \quad D_{1}=0, \quad D_{2}=0, \quad D_{3}=0$,
$D_{4}=0$,
$\rho=k_{1} x+k_{2}, \quad \omega=k_{3}, \quad \eta=\int f_{1}(y) \mathrm{d} y+f_{2}(t), \quad h_{5}=0, \quad h_{6}=0$,
where $f_{1}(y)$ and $f_{2}(t)$ are arbitrary functions of y and t respectively, $f_{2}^{\prime}(t)=\mathrm{d} f_{2}(t) / \mathrm{d} t, k_{1}$ and k_{3} are nonzero constants, k_{2} and k_{4} are arbitrary constants.

Case 3.

$$
\begin{align*}
& a_{0}=-\frac{\left(4 k_{1}^{2} k_{3}^{2} h_{2}+3 k_{4}\right) f_{1}(y)}{3 k_{1} k_{3}}, \quad a_{1}=0, \quad a_{2}=0, \quad a_{3}=0, \\
& a_{4}=0, \quad b_{1}=0, \tag{44}\\
& b_{2}=-2 k_{1} k_{3} h_{4} f_{1}(y), \quad b_{3}=0, \quad b_{4}=-4 k_{1} k_{3} h_{6} f_{1}(y), \quad c_{1}=0, \\
& c_{2}= \pm 4 k_{1} k_{3} \sqrt{h_{6}} f_{1}(y), \tag{45}\\
& c_{3}=0, \quad c_{4}=0, \quad d_{1}=0, \quad d_{2}=0, \quad d_{3}=0, \quad d_{4}=0, \\
& A_{0}=\frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}, \quad A_{1}=0, \tag{46}\\
& A_{2}=0, \quad A_{3}=0, \quad A_{4}=0, \quad B_{1}=0, \quad B_{2}=-2 k_{1}^{2} k_{3}^{2} h_{4}, \\
& B_{3}=0, \quad B_{4}=-4 k_{1}^{2} k_{3}^{2} h_{6}, \tag{47}\\
& C_{1}=0, \quad C_{2}= \pm 4 k_{1}^{2} k_{3}^{2} \sqrt{h_{6}}, \quad C_{3}=0, \quad C_{4}=0, \quad D_{1}=0, \\
& D_{2}=0, \quad D_{3}=0, \quad D_{4}=0, \tag{48}
\end{align*}
$$

$$
\begin{align*}
& \rho=k_{1} x+k_{2}, \quad \omega=k_{3}, \quad \eta=\int f_{1}(y) \mathrm{d} y+f_{2}(t), \quad h_{0}=h_{0}, \\
& h_{1}=0, \quad h_{3}=0, \quad h_{5}=0, \tag{49}
\end{align*}
$$

where $f_{1}(y)$ and $f_{2}(t)$ are arbitrary functions of y and t respectively, $f_{2}^{\prime}(t)=\mathrm{d} f_{2}(t) / \mathrm{d} t, k_{1}$ and k_{3} are nonzero constants, k_{2} and k_{4} are arbitrary constants.

Case 4.
$a_{0}=-\frac{\left(4 k_{1}^{2} k_{3}^{2} h_{2}+3 k_{4}\right) f_{1}(y)}{3 k_{1} k_{3}}, \quad a_{1}=0, \quad a_{2}=0, \quad a_{3}=0$,
$a_{4}=0, \quad b_{1}=0$,
$b_{2}=-4 k_{1} k_{3} h_{4} f_{1}(y), \quad b_{3}=0, \quad b_{4}=-8 k_{1} k_{3} h_{6} f_{1}(y), \quad c_{1}=0$,
$c_{2}=0, \quad c_{3}=0$,
$c_{4}=0, \quad d_{1}=0, \quad d_{2}=0, \quad d_{3}=0, \quad d_{4}=0$,
$A_{0}=\frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}, \quad A_{1}=0$,
$A_{2}=0, \quad A_{3}=0, \quad A_{4}=0, \quad B_{1}=0, \quad B_{2}=-4 k_{1}^{2} k_{3}^{2} h_{4}, \quad B_{3}=0$,
$B_{4}=-8 k_{1}^{2} k_{3}^{2} h_{6}$,
$C_{1}=0, \quad C_{2}=0, \quad C_{3}=0, \quad C_{4}=0, \quad D_{1}=0, \quad D_{2}=0$,
$D_{3}=0, \quad D_{4}=0, \quad \rho=k_{1} x+k_{2}$,
$\omega=k_{3}, \quad \eta=\int f_{1}(y) \mathrm{d} y+f_{2}(t), \quad h_{4}^{2}=4 h_{2} h_{6}, \quad h_{0}=0$,
$h_{1}=0, \quad h_{3}=0, \quad h_{5}=0$,
where $f_{1}(y)$ and $f_{2}(t)$ are arbitrary functions of y and t respectively, $f_{2}^{\prime}(t)=\mathrm{d} f_{2}(t) / \mathrm{d} t, k_{1}$ and k_{3} are nonzero constants, k_{2} and k_{4} are arbitrary constants.

From (29) and (30), cases 1-2 and cases I-V in [22], we can obtain many kinds of solutions of equations (27) and (28) depending on the special choice for $h_{i}(i=0,1,2, \ldots, 6)$.
3.1. If $h_{0}=r^{2}, h_{1}=2 r p, h_{2}=2 r q+p^{2}, h_{3}=2 p q, h_{4}=q^{2}, h_{5}=h_{6}=0$, then $\phi(\xi)$ is one of the $24 \phi_{l}^{\mathrm{I}}(l=1,2, \ldots, 24)$

For example, if we select $l=10$, from case 1 we obtain soliton-like solutions of equations (27) and (28):

$$
\begin{aligned}
u= & \frac{\left[k_{1}^{2} k_{3}^{2}\left(-2 q r-p^{2} \pm 6|q r|\right)-3 k_{4}\right] f_{1}(y)}{3 k_{1} k_{3}}-\frac{1}{2} k_{1} k_{3} p f_{1}(y) \operatorname{sech}(M \xi) \\
& \times[M \sinh (M \xi)-p \cosh (M \xi) \pm \mathrm{i} M]-\frac{1}{4} k_{1} k_{3} f_{1}(y) \operatorname{sech}^{2}(M \xi) \\
& \times[M \sinh (M \xi)-p \cosh (M \xi) \pm \mathrm{i} M]^{2}-\frac{2 k_{1} k_{3} p q r f_{1}(y) \cosh (M \xi)}{[M \sinh (M \xi)-p \cosh (M \xi) \pm \mathrm{i} M]}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{4 k_{1} k_{3} q^{2} r^{2} f_{1}(y) \cosh ^{2}(M \xi)}{[M \sinh (M \xi)-p \cosh (M \xi) \pm \mathrm{i} M]^{2}} \pm \frac{2 k_{1} k_{3}|q| r M^{2} f_{1}(y)[-1 \pm \mathrm{i} \sinh (M \xi)]}{[M \sinh (M \xi)-p \cosh (M \xi) \pm \mathrm{i} M]^{2}} \\
& \pm \frac{1}{2} k_{1} k_{3} \varepsilon M^{2} f_{1}(y) \operatorname{sech}^{2}(M \xi)[-1 \pm \mathrm{i} \sinh (M \xi)], \\
v= & \frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}-\frac{1}{2} k_{1}^{2} k_{3}^{2} p \operatorname{sech}(M \xi)[M \sinh (M \xi)-p \cosh (M \xi) \pm \mathrm{i} M] \\
& -\frac{1}{4} k_{1}^{2} k_{3}^{2} \operatorname{sech}^{2}(M \xi)[M \sinh (M \xi)-p \cosh (M \xi) \pm \mathrm{i} M]^{2} \\
& -\frac{2 k_{1}^{2} k_{3}^{2} p q r \cosh (M \xi)}{[M \sinh (M \xi)-p \cosh (M \xi) \pm \mathrm{i} M]}-\frac{4 k_{1}^{2} k_{3}^{2} q^{2} r^{2} \cosh ^{2}(M \xi)}{\left[M \sinh (M \xi)-p \cosh ^{2}(M \xi) \pm \mathrm{i} M\right]^{2}} \\
& \pm \frac{2 k_{1}^{2} k_{3}^{2}|q| r M^{2}[-1 \pm \mathrm{i} \sinh (M \xi)]}{[M \sinh (M \xi)-p \cosh (M \xi) \pm \mathrm{i} M]^{2}} \pm \frac{1}{2} k_{1}^{2} k_{3}^{2} \varepsilon M^{2} \operatorname{sech}^{2}(M \xi)[-1 \pm \mathrm{i} \sinh (M \xi)],
\end{aligned}
$$

where $\xi=\left(k_{1} x+k_{2}\right) k_{3}+\int f_{1}(y) \mathrm{d} y+f_{2}(t), M=\sqrt{p^{2}-4 q r}$. If ' + ' is used in a_{0}, then $q r<0$. If ' - ' is used in a_{0}, then $q r>0$.
3.2. If $h_{0}=r^{2}, h_{1}=2 r p, h_{2}=h_{5}=h_{6}=0, h_{3}=2 p q, h_{4}=q^{2}$ and $p^{2}=-2 r q$, then $\phi(\xi)$ is one of the $12 \phi_{l}^{\mathrm{II}}(l=1,2, \ldots, 12)$

For example, if we select $l=12$, from case 1 we obtain soliton-like solutions of equations (27) and (28):
$u=-\frac{2 k_{1} k_{3} q r+k_{4} f_{1}(y)}{k_{1} k_{3}}-\frac{1}{4} k_{1} k_{3} \varepsilon \sqrt{-2 q r} f_{1}(y) \operatorname{sech}(N \xi) \operatorname{csch}(N \xi)$
$\times\left[\mp 2 \sqrt{-2 q r} \sinh (N \xi) \cosh (N \xi)+8 N \cosh ^{2}(N \xi)-4 N\right]$
$-\frac{1}{16} k_{1} k_{3} f_{1}(y) \operatorname{sech}^{2}(N \xi) \operatorname{csch}^{2}(N \xi)[\mp 2 \sqrt{-2 q r} \sinh (N \xi) \cosh (N \xi)$
$\left.+8 N \cosh ^{2}(N \xi)-4 N\right]^{2}-\frac{4 k_{1} k_{3} q r \varepsilon \sqrt{-2 q r} f_{1}(y) \cosh (N \xi) \sinh (N \xi)}{\mp 2 \sqrt{-2 q r} \sinh (N \xi) \cosh (N \xi)+8 N \cosh ^{2}(N \xi)-4 N}$
$-\frac{16 k_{1} k_{3} q^{2} r^{2} f_{1}(y) \cosh ^{2}(N \xi) \sinh ^{2}(N \xi)}{\left[\mp 2 \sqrt{-2 q r} \sinh (N \xi) \cosh (N \xi)+8 N \cosh ^{2}(N \xi)-4 N\right]^{2}} \pm \frac{3 k_{1} k_{3}|q| r f_{1}(y)}{[\sqrt{3} \cosh (2 N \xi) \mp \sinh (2 N \xi)]^{2}}$
$\pm \frac{3 k_{1} k_{3} \varepsilon f_{1}(y) \operatorname{sech}^{2}(N \xi) \operatorname{csch}^{2}(N \xi)\left[\mp 2 \sqrt{-2 q r} \sinh (N \xi) \cosh (N \xi)+8 N \cosh ^{2}(N \xi)-4 N\right]^{2}}{16[\sqrt{3} \cosh (2 N \xi) \mp \sinh (2 N \xi)]^{2}}$,
$v=\frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}-\frac{1}{4} k_{1}^{2} k_{3}^{2} \varepsilon \sqrt{-2 q r} \operatorname{sech}(N \xi) \operatorname{csch}(N \xi)[\mp 2 \sqrt{-2 q r} \sinh (N \xi) \cosh (N \xi)$
$\left.+8 N \cosh ^{2}(N \xi)-4 N\right]-\frac{1}{16} k_{1}^{2} k_{3}^{2} \operatorname{sech}^{2}(N \xi) \operatorname{csch}^{2}(N \xi)[\mp 2 \sqrt{-2 q r} \sinh (N \xi) \cosh (N \xi)$
$\left.+8 N \cosh ^{2}(N \xi)-4 N\right]^{2}-\frac{4 k_{1}^{2} k_{3}^{2} q r \varepsilon \sqrt{-2 q r} \cosh (N \xi) \sinh (N \xi)}{\mp 2 \sqrt{-2 q r} \sinh (N \xi) \cosh (N \xi)+8 N \cosh ^{2}(N \xi)-4 N}$
$-\frac{16 k_{1}^{2} k_{3}^{2} q^{2} r^{2} \cosh ^{2}(N \xi) \sinh ^{2}(N \xi)}{\left[\mp 2 \sqrt{-2 q r} \sinh (N \xi) \cosh (N \xi)+8 N \cosh ^{2}(N \xi)-4 N\right]^{2}} \pm \frac{3 k_{1}^{2} k_{3}^{2}|q| r}{[\sqrt{3} \cosh (2 N \xi) \mp \sinh (2 N \xi)]^{2}}$
$\pm \frac{3 k_{1}^{2} k_{3}^{2} \varepsilon \operatorname{sech}^{2}(N \xi) \operatorname{csch}^{2}(N \xi)\left[\mp 2 \sqrt{-2 q r} \sinh (N \xi) \cosh (N \xi)+8 N \cosh ^{2}(N \xi)-4 N\right]^{2}}{16[\sqrt{3} \cosh (2 N \xi) \mp \sinh (2 N \xi)]^{2}}$,
where $\xi=\left(k_{1} x+k_{2}\right) k_{3}+\int f_{1}(y) \mathrm{d} y+f_{2}(t), N=\sqrt{-6 q r} / 4, q r<0$.
3.3. If $h_{0}=h_{1}=h_{5}=h_{6}=0, h_{2}, h_{3}, h_{4}$ are arbitrary constants, then $\phi(\xi)$ is one of the ten $\phi_{l}^{\text {III }}(l=1,2, \ldots, 10)$
For example, if we select $l=4$, then $h_{2}=4, h_{3}=4(d-2 b) / a, h_{4}=\left(c^{2}+4 b^{2}-4 b d\right) / a^{2}$, from case 1 we obtain soliton-like solutions of equations (27) and (28):

$$
\begin{aligned}
u= & -\frac{\left(4 k_{1}^{2} k_{3}^{2}+3 k_{4}\right) f_{1}(y)}{3 k_{1} k_{3}}-\frac{2 k_{1} k_{3}(d-2 b) f_{1}(y) \operatorname{csch}^{2}(\xi)}{b \operatorname{csch}^{2}(\xi)+c \operatorname{coth}(\xi)+d} \\
& -\frac{k_{1} k_{3}\left(c^{2}+4 b^{2}-4 b d\right) f_{1}(y) \operatorname{csch}^{4}(\xi)}{\left[b \operatorname{csch}^{2}(\xi)+c \operatorname{coth}(\xi)+d\right]^{2}} \\
& \mp \frac{4 k_{1} k_{3} \varepsilon \sqrt{c^{2}+4 b^{2}-4 b d} f_{1}(y)[c \cosh (2 \xi)+d \sinh (2 \xi)]}{[2 b-d+d \cosh (2 \xi)+c \sinh (2 \xi)]^{2}}, \\
v= & \frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}-\frac{2 k_{1}^{2} k_{3}^{2}(d-2 b) \operatorname{csch}^{2}(\xi)}{b \operatorname{csch}^{2}(\xi)+c \operatorname{coth}(\xi)+d}-\frac{k_{1}^{2} k_{3}^{2}\left(c^{2}+4 b^{2}-4 b d\right) \operatorname{csch}^{4}(\xi)}{\left[b \operatorname{csch}^{2}(\xi)+c \operatorname{coth}(\xi)+d\right]^{2}} \\
& \mp \frac{4 k_{1}^{2} k_{3}^{2} \varepsilon \sqrt{c^{2}+4 b^{2}-4 b d}[c \cosh (2 \xi)+d \sinh (2 \xi)]}{[2 b-d+d \cosh (2 \xi)+c \sinh (2 \xi)]^{2}},
\end{aligned}
$$

where $\xi=\left(k_{1} x+k_{2}\right) k_{3}+\int f_{1}(y) \mathrm{d} y+f_{2}(t)$.
3.4. If $h_{1}=h_{3}=h_{5}=h_{6}=0, h_{0}, h_{2}, h_{4}$ are arbitrary constants, then $\phi(\xi)$ is one of the 16 $\phi_{l}^{\mathrm{IV}}(l=1,2, \ldots, 16)$

For example, if we select $l=13$, then $h_{0}=1 / 4, h_{2}=\left(1-2 m^{2}\right) / 2, h_{4}=1 / 4$, from case 1 we obtain combined non-degenerative Jacobi elliptic doubly-like periodic solutions of equations (27) and (28):

$$
\begin{aligned}
u= & \frac{\left[-k_{1}^{2} k_{3}^{2}\left(1-2 m^{2}\right) \pm 3 k_{1}^{2} k_{3}^{2}-6 k_{4}\right] f_{1}(y)}{6 k_{1} k_{3}}-\frac{1}{4} \frac{k_{1} k_{3} f_{1}(y)}{[\operatorname{ns}(\xi) \pm \operatorname{cs}(\xi)]^{2}} \\
& -\frac{1}{4} k_{1} k_{3} f_{1}(y)[\mathrm{ns}(\xi) \pm \operatorname{cs}(\xi)]^{2} \mp \frac{1}{2} k_{1} k_{3} f_{1}(y)[\operatorname{cs}(\xi) \mathrm{ds}(\xi) \pm \mathrm{ns}(\xi) \mathrm{ds}(\xi)] \\
& \pm \frac{1}{2} k_{1} k_{3} f_{1}(y) \frac{\mp \mathrm{ds}(\xi)}{\mathrm{ns}(\xi) \pm \operatorname{cs}(\xi)}, \\
v= & \frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}-\frac{1}{4} \frac{k_{1}^{2} k_{3}^{2}}{[\mathrm{~ns}(\xi) \pm \operatorname{cs}(\xi)]^{2}}-\frac{1}{4} k_{1}^{2} k_{3}^{2}[\mathrm{~ns}(\xi) \pm \operatorname{cs}(\xi)]^{2} \\
& \mp \frac{1}{2} k_{1}^{2} k_{3}^{2}[\operatorname{cs}(\xi) \operatorname{ds}(\xi) \pm \mathrm{ns}(\xi) \mathrm{ds}(\xi)] \pm \frac{1}{2} k_{1}^{2} k_{3}^{2} \frac{\mp \mathrm{ds}(\xi)}{\mathrm{ns}(\xi) \pm \operatorname{cs}(\xi)},
\end{aligned}
$$

where $\xi=\left(k_{1} x+k_{2}\right) k_{3}+\int f_{1}(y) \mathrm{d} y+f_{2}(t)$.
In the limit case when $m \rightarrow 1$, we obtain combined soliton-like solutions of equations (27) and (28):

$$
\begin{aligned}
& u= \frac{\left(k_{1}^{2} k_{3}^{2} \pm 3 k_{1}^{2} k_{3}^{2}-6 k_{4}\right) f_{1}(y)}{6 k_{1} k_{3}}-\frac{1}{4} \frac{k_{1} k_{3} f_{1}(y)}{[\operatorname{coth}(\xi) \pm \operatorname{csch}(\xi)]^{2}}-\frac{1}{4} k_{1} k_{3} f_{1}(y)[\operatorname{coth}(\xi) \pm \operatorname{csch}(\xi)]^{2} \\
& \mp \frac{1}{2} k_{1} k_{3} f_{1}(y)\left[\operatorname{csch}^{2}(\xi) \pm \operatorname{coth}(\xi) \operatorname{csch}(\xi)\right] \pm \frac{1}{2} k_{1} k_{3} f_{1}(y) \frac{\mp \operatorname{csch}(\xi)}{\operatorname{coth}(\xi) \pm \operatorname{csch}(\xi)}, \\
& v= \frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}-\frac{1}{4} \frac{k_{1}^{2} k_{3}^{2}}{[\operatorname{coth}(\xi) \pm \operatorname{csch}(\xi)]^{2}}-\frac{1}{4} k_{1}^{2} k_{3}^{2}[\operatorname{coth}(\xi) \pm \operatorname{csch}(\xi)]^{2} \\
& \mp \frac{1}{2} k_{1}^{2} k_{3}^{2}\left[\operatorname{csch}^{2}(\xi) \pm \operatorname{coth}(\xi) \operatorname{csch}(\xi)\right] \pm \frac{1}{2} k_{1}^{2} k_{3}^{2} \frac{\mp \operatorname{csch}(\xi)}{\operatorname{coth}(\xi) \pm \operatorname{csch}(\xi)}, \\
& \text { where } \xi=\left(k_{1} x+k_{2}\right) k_{3}+\int f_{1}(y) \mathrm{d} y+f_{2}(t) .
\end{aligned}
$$

When $m \rightarrow 0$, we obtain triangular-like solutions of equations (27) and (28):

$$
\begin{aligned}
u= & \frac{\left(-k_{1}^{2} k_{3}^{2} \pm 3 k_{1}^{2} k_{3}^{2}-6 k_{4}\right) f_{1}(y)}{6 k_{1} k_{3}}-\frac{1}{4} \frac{k_{1} k_{3} f_{1}(y)}{[\csc (\xi) \pm \cot (\xi)]^{2}}-\frac{1}{4} k_{1} k_{3} f_{1}(y)[\csc (\xi) \pm \cot (\xi)]^{2} \\
& \mp \frac{1}{2} k_{1} k_{3} f_{1}(y)\left[\cot (\xi) \csc (\xi) \pm \csc ^{2}(\xi)\right] \pm \frac{1}{2} k_{1} k_{3} f_{1}(y) \frac{\mp \csc (\xi)}{\csc (\xi) \pm \cot (\xi)} \\
v= & \frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}-\frac{1}{4} \frac{k_{1}^{2} k_{3}^{2}}{[\csc (\xi) \pm \cot (\xi)]^{2}}-\frac{1}{4} k_{1}^{2} k_{3}^{2}[\csc (\xi) \pm \cot (\xi)]^{2} \\
& \mp \frac{1}{2} k_{1}^{2} k_{3}^{2}\left[\cot (\xi) \csc (\xi) \pm \csc ^{2}(\xi)\right] \pm \frac{1}{2} k_{1}^{2} k_{3}^{2} \frac{\mp \csc (\xi)}{\csc (\xi) \pm \cot (\xi)}
\end{aligned}
$$

where $\xi=\left(k_{1} x+k_{2}\right) k_{3}+\int f_{1}(y) \mathrm{d} y+f_{2}(t)$.
3.5. If $h_{2}=h_{4}=h_{5}=h_{6}=0, h_{0}, h_{1}, h_{3}$ are arbitrary constants, then $\phi(\xi)$ is the only ϕ_{1}^{V}

From equation (37) we get $h_{0}=0$ or $h_{3}=0$, equations (27) and (28) have not solutions for this case. Fortunately, from case 2 we obtain Weierstrass elliptic doubly-like periodic solutions of equations (27) and (28):

$$
\begin{aligned}
& u=-\frac{k_{4}}{k_{1} k_{3}} f_{1}(y)-\frac{1}{2} k_{1} k_{3} h_{3} f_{1}(y) \wp\left(\frac{\sqrt{h_{3}}}{2} \xi, g_{2}, g_{3}\right), \\
& v=\frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}-\frac{1}{2} k_{1}^{2} k_{3}^{2} h_{3} \wp\left(\frac{\sqrt{h_{3}}}{2} \xi, g_{2}, g_{3}\right),
\end{aligned}
$$

where $\xi=\left(k_{1} x+k_{2}\right) k_{3}+\int f_{1}(y) \mathrm{d} y+f_{2}(t), h_{3}>0, g_{2}=-4 h_{1} / h_{3}, g_{3}=-4 h_{0} / h_{3}$.
From (29) and (30), cases 3-4 and cases I-V listed in the present paper, we can obtain many kinds of solutions of equations (27) and (28) depending on the special choice for h_{i} ($i=0,1,2, \ldots, 6$).
3.6. If $h_{1}=h_{3}=h_{5}=0, h_{0}=\frac{8 h_{2}^{2}}{27 h_{4}}$ and $h_{6}=\frac{h_{4}^{2}}{4 h_{2}}$, then $\phi(\xi)$ is one of the (9) and (10)

For example, if we select (9), from case 3 we obtain triangular-like solutions (see figures 1 and 2) of equations (27) and (28):

$$
\begin{align*}
u= & -\frac{\left(4 k_{1}^{2} k_{3}^{2} h_{2}+3 k_{4}\right) f_{1}(y)}{3 k_{1} k_{3}}-\frac{16 k_{1} k_{3} h_{2} f_{1}(y) \tan ^{2}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)}{3\left[3-\tan ^{2}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)\right]} \\
& -\frac{64 k_{1} k_{3} h_{2} f_{1}(y) \tan ^{4}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)}{9\left[3-\tan ^{2}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)\right]^{2}} \mp \frac{8 k_{1} k_{3} h_{2} \varepsilon f_{1}(y) \sin \left(2 \varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)}{\sqrt{3}\left[1+2 \cos \left(2 \varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)\right]^{2}}, \tag{56}\\
v= & \frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}-\frac{16 k_{1}^{2} k_{3}^{2} h_{2} \tan ^{2}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)}{3\left[3-\tan ^{2}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)\right]} \\
& -\frac{64 k_{1}^{2} k_{3}^{2} h_{2} \tan ^{4}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)}{9\left[3-\tan ^{2}\left(\varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)\right]^{2}} \mp \frac{8 k_{1}^{2} k_{3}^{2} h_{2} \varepsilon \sin \left(2 \varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)}{\sqrt{3}\left[1+2 \cos \left(2 \varepsilon \sqrt{h_{2} / 3}\left(\xi+\xi_{0}\right)\right)\right]^{2}}, \tag{57}
\end{align*}
$$

where $\xi=\left(k_{1} x+k_{2}\right) k_{3}+\int f_{1}(y) \mathrm{d} y+f_{2}(t)$.
3.7. If $h_{0}=h_{1}=h_{3}=h_{5}=0$ and $h_{6} \neq 0$, then $\phi(\xi)$ is one of the (11)-(19) and (24)

For example, if we select (12), from case 3 we obtain soliton-like solutions of equations (27) and (28):

Figure 1. Spatial structure of equation (56) is shown at $k_{1}=k_{2}=k_{3}=k_{4}=\xi_{0}=\varepsilon=1, h_{2}=1$, $f_{1}(y)=\tanh (y), f_{2}(t)=\operatorname{sech}(t), t=0$, and the sign ' \mp ' selected by ' + '.

$$
\begin{aligned}
u= & -\frac{\left(4 k_{1}^{2} k_{3}^{2} h_{2}+3 k_{4}\right) f_{1}(y)}{3 k_{1} k_{3}}-\frac{2 k_{1} k_{3} h_{2} h_{4}^{2} f_{1}(y) \operatorname{csch}^{2}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{h_{4}^{2}-h_{2} h_{6}\left(1+\varepsilon \operatorname{coth}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right)^{2}} \\
& -\frac{4 k_{1} k_{3} h_{2}^{2} h_{4}^{2} h_{6} f_{1}(y) \operatorname{csch}^{4}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{\left[h_{4}^{2}-h_{2} h_{6}\left(1+\varepsilon \operatorname{coth}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right)^{2}\right]^{2}} \pm 2 k_{1} k_{3} h_{2} h_{4} \sqrt{h_{2} h_{6}} f_{1}(y) \operatorname{csch}^{4}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right) \\
& \times \frac{\left[2 h_{2} h_{6} \varepsilon \cosh \left(2 \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)+\left(2 h_{2} h_{6}-h_{4}^{2}\right) \sinh \left(2 \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right]}{\left[h_{4}^{2}-h_{2} h_{6}\left(1+\varepsilon \operatorname{coth}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right)^{2}\right]^{2}}, \\
v= & \frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}-\frac{2 k_{1}^{2} k_{3}^{2} h_{2} h_{4}^{2} \operatorname{csch}^{2}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{h_{4}^{2}-h_{2} h_{6}\left(1+\varepsilon \operatorname{coth}^{\left.\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right)^{2}}\right.} \\
& -\frac{4 k_{1}^{2} k_{3}^{2} h_{2}^{2} h_{4}^{2} h_{6} \operatorname{csch}^{4}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{\left[h_{4}^{2}-h_{2} h_{6}\left(1+\varepsilon \operatorname{coth}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right)^{2}\right]^{2}} \pm 2 k_{1}^{2} k_{3}^{2} h_{2} h_{4} \sqrt{h_{2} h_{6}} \operatorname{csch}^{4}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right) \\
& \times \frac{\left[2 h_{2} h_{6} \varepsilon \cosh \left(2 \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)+\left(2 h_{2} h_{6}-h_{4}^{2}\right) \sinh \left(2 \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right]}{\left[h_{4}^{2}-h_{2} h_{6}\left(1+\varepsilon \operatorname{coth}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right)^{2}\right]^{2}},
\end{aligned}
$$

where $\xi=\left(k_{1} x+k_{2}\right) k_{3}+\int f_{1}(y) \mathrm{d} y+f_{2}(t)$.
3.8. If $h_{0}=h_{1}=h_{3}=h_{5}=0, h_{6} \neq 0$ and $h_{4}^{2}-4 h_{2} h_{6}=0$, then $\phi(\xi)$ is one of the (25)
and (26)
For example, if we select (25), from case 3 we obtain soliton-like solutions of equations (27) and (28):

$$
\begin{aligned}
u= & -\frac{\left(4 k_{1}^{2} k_{3}^{2} h_{2}+3 k_{4}\right) f_{1}(y)}{3 k_{1} k_{3}}+2 k_{1} k_{3} h_{2} f_{1}(y)\left[1+\varepsilon \tanh \left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right] \\
& -k_{1} k_{3} h_{2} f_{1}(y)\left[1+\varepsilon \tanh \left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right]^{2} \mp k_{1} k_{3} h_{2} \varepsilon f_{1}(y) \operatorname{sech}^{2}\left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right), \\
v= & -\frac{3 k_{1} k_{3} k_{4}+f_{2}^{\prime}(t)}{3 k_{1} k_{3}}+2 k_{1}^{2} k_{3}^{2} h_{2}\left[1+\varepsilon \tanh \left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right] \\
& -k_{1}^{2} k_{3}^{2} h_{2}\left[1+\varepsilon \tanh \left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right]^{2} \mp k_{1}^{2} k_{3}^{2} h_{2} \varepsilon \operatorname{sech}^{2}\left(\varepsilon \sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right),
\end{aligned}
$$

where $\xi=\left(k_{1} x+k_{2}\right) k_{3}+\int f_{1}(y) \mathrm{d} y+f_{2}(t)$.

Figure 2. Spatial structure of equation (56) is shown at $k_{1}=k_{2}=k_{3}=k_{4}=\xi_{0}=\varepsilon=1, h_{2}=1$, $f_{1}(y)=\sin (y), f_{2}(t)=\tanh (t), t=0$, and the sign ' \mp ' selected by ' + '.

From (29) and (30), cases 1-4, we can obtain other exact solutions of equations (27) and (28), here we omit them for simplicity.

Remark 1. Chen et al obtained only case 2 in [21]. To the best of our knowledge, all the solutions obtained from cases 1,3 and 4 are new and have not been reported yet. All the results reported in this paper have been checked with Mathematica. By using our method, we can also obtain new and more general exact solutions of the other NLPDEs in [20, 22-29] including all the solutions given there as special cases of our method. It shows that our method is more powerful than the methods [20-29] in constructing exact solutions of NLPDEs.

4. Conclusion

In this paper, we have presented a generalized auxiliary equation method to construct more general exact solutions of NLPDEs, which can be thought of as the expansion of tanh function method [6], F-expansion method [16, 17], algebraic method [20-23], auxiliary equation method [24-29]. With the help of Mathematica, our method provides a powerful mathematical tool to obtain more general exact solutions of a great many NLPDEs in mathematical physics, such as the (3+1)-dimensional Kadomtsev-Petviashvili equation, the $(2+1)$-dimensional Korteweg-de Vries equations, Broer-Kaup-Kupershmidt equations, breaking soliton equations, Broer-Kaup equations, dispersive long wave equations and so on. Applying our method to the (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations, we have obtained many new and more general exact solutions with two arbitrary functions. The arbitrary functions in the obtained solutions imply that these solutions have rich local structures. It may be important to explain some physical phenomena.

It should be noted that more complicated computation is expected than ever before because of using the general ansatz (2). In general it is very difficult to solve the set of over-determined partial differential equations obtained in step 3. As the calculation goes on, in order to drastically simplify the work or make the work feasible, we often choose special forms for $a_{0}, a_{i}, b_{i}, c_{i}, d_{i}$ and ξ on a trial and error basis. In appendix A , the KdV equation (4) is considered. Besides, for some special types of NLPDEs, such as nonlinear Schrödinger equation, sine-Gordon equation, Tzitzeica-Dodd-Bullough equation and so on, we can take
some proper transformations to change them into convenient ones for us to use our method. In appendix B, three examples are given.

Acknowledgments

The authors are very grateful to the referees for their valuable advices and corrections to the paper. This work was supported by the Natural Science Foundation of Educational Committee of Liaoning Province of People's Republic of China.

Appendix A

For the KdV equation (4), we assume the solution of it can be expressed by

$$
\begin{equation*}
u=a_{0}+\sum_{i=1}^{4}\left\{a_{i} \phi^{-i}(\xi)+b_{i} \phi^{i}(\xi)+c_{i} \phi^{i-1}(\xi) \phi^{\prime}(\xi)+d_{i} \phi^{-i}(\xi) \phi^{\prime}(\xi)\right\} \tag{A.1}
\end{equation*}
$$

where $a_{0}=a_{0}(x, t), a_{i}=a_{i}(x, t), b_{i}=b_{i}(x, t), c_{i}=c_{i}(x, t), d_{i}=d_{i}(x, t)(i=1,2,3,4)$, $\xi=\xi(x, t)$.

With the aid of Mathematica, substituting (A.1) along with (3) into equation (4), then collecting the coefficients of $\phi^{j}(\xi) \phi^{\prime l}(\xi)(l=0,1 ; j= \pm 1, \pm 2, \ldots)$ to zero, we get a set of over-determined partial differential equations for $a_{0}, a_{i}, b_{i}, c_{i}, d_{i}, \xi$ as follows:

$$
\begin{aligned}
& 33 c_{4} \xi_{x}\left(2 h_{6} c_{3}+h_{5} c_{4}\right)=0, \\
& 6 h_{6} c_{4}\left(10 b_{4} \xi_{x}+80 h_{6} \xi_{x}^{3}+c_{4, x}\right)=0, \quad-48 h_{0} a_{4} d_{4} \xi_{x}=0, \\
& 15 \xi_{x}\left[-h_{1} d_{3}^{2}-h_{3} d_{4}^{2}-6 h_{1} a_{4} \xi_{x}^{2}-2\left(a_{1} a_{4}+a_{2} a_{3}+h_{0} d_{2} d_{3}+h_{0} d_{1} d_{4}+h_{1} d_{2} d_{4}+h_{2} d_{3} d_{4}\right)\right. \\
& \left.\quad+4 h_{0}\left(d_{4} \xi_{x x}+d_{4, x} \xi_{x}+a_{3} \xi_{x}^{2}\right)\right]+6\left(a_{2} d_{4}+a_{3} d_{3}+a_{4} d_{2}\right)_{x}=0 \\
& d_{1, t}+d_{1, x x x}+6\left(a_{0} d_{1}+a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}+a_{4} c_{4}+b_{1} d_{2}+b_{2} d_{3}+b_{3} d_{4}\right)_{x}=0, \\
& 24 \xi_{x}\left[b_{4}^{2}+h_{6} c_{2}^{2}+h_{4} c_{3}^{2}+h_{2} c_{4}^{2}+2\left(h_{6} c_{1} c_{3}+h_{5} c_{1} c_{4}+h_{5} c_{2} c_{3}+h_{4} c_{2} c_{4}+h_{3} c_{3} c_{4}+h_{6} c_{4} d_{1}\right)\right. \\
& \left.\quad+2 h_{6} \xi_{x}\left(3 c_{4} \xi_{x x}+3 c_{4, x} \xi_{x}+4 b_{4} \xi_{x}^{2}\right)\right]+6\left(b_{4} c_{4}\right)_{x}=0, \\
& -24 \xi_{x}\left(a_{4}^{2}+h_{0} d_{4}^{2}\right)=0, \quad 36 h_{6} c_{4}^{2} \xi_{x}=0,
\end{aligned}
$$

there are totally 43 equations in the set of over-determined partial differential equations, just some simple and central equations are shown here for convenience. However, it is very difficult for us to get the explicit expressions for $a_{0}, a_{i}, b_{i}, c_{i}, d_{i}$ and ξ from the set of over-determined partial differential equations. For example, one result is obtained as follows:

$$
\begin{align*}
& a_{0}=\frac{-4 h_{2} \xi_{x}^{4}-\xi_{x} \xi_{t}+3 \xi_{x x}^{2}-4 \xi_{x} \xi_{x x x}}{6 \xi_{x}^{2}}, \quad a_{1}=0, \quad a_{2}=0, \quad a_{3}=0 \\
& a_{4}=0, \quad b_{1}=0, \tag{A.2}\\
& b_{2}=-2 h_{4} \xi_{x}^{2} \pm 2 \sqrt{h_{6} \xi_{x x}, \quad b_{3}=0, \quad b_{4}=-4 h_{6} \xi_{x}^{2}, \quad c_{1}=0} \begin{array}{l}
c_{2}= \pm 4 \sqrt{h_{6}} \xi_{x}^{2}, \quad c_{3}=0,
\end{array}
\end{align*}
$$

$c_{4}=0, \quad d_{1}=-2 \xi_{x x}, \quad d_{2}=0, \quad d_{3}=0, \quad d_{4}=0, \quad h_{0}=0$,

$$
c_{4}=0, \quad d_{1}=-2 \xi_{x x}, \quad d_{2}=0, \quad d_{3}=0, \quad d_{4}=0, \quad h_{0}=0
$$

$$
\begin{equation*}
h_{1}=0, \quad h_{3}=0, \quad h_{5}=0, \tag{A.4}
\end{equation*}
$$

where ξ satisfies

$$
\begin{align*}
& \xi_{x} \xi_{x x}\left(\xi_{t}+4 \xi_{x x x}\right)-\xi_{x}^{2}\left(\xi_{x t}+\xi_{x x x x}\right)+4 h_{2} \xi_{x}^{4} \xi_{x x}-3 \xi_{x x}^{3}=0 \tag{A.5}\\
& \begin{aligned}
& 15 \xi_{x} \xi_{x x}^{3}\left(\xi_{t}+16 \xi_{x x x}\right)-\xi_{x}^{2} \xi_{x x}\left(\xi_{t}^{2}+15 \xi_{x t} \xi_{x x}+20 \xi_{t} \xi_{x x x}+78 \xi_{x x} \xi_{x x x x}+136 \xi_{x x x}^{2}\right) \\
&+\xi_{x}^{3}\left(2 \xi_{t} \xi_{x t}+9 \xi_{x x} \xi_{x x t}+11 \xi_{x t} \xi_{x x x}+5 \xi_{t} \xi_{x x x x}+50 \xi_{x x x} \xi_{x x x x}+18 \xi_{x x} \xi_{x x x x x}\right) \\
&+32 h_{2}^{2} \xi_{x}^{8} \xi_{x x}-\xi_{x}^{4}\left(\xi_{t t}+5 \xi_{x x x t}+4 \xi_{x x x x x x}\right)+4 h_{2} \xi_{x}^{5} \xi_{x x}\left(\xi_{t}+28 \xi_{x x x}\right) \\
& \quad-4 h_{2} \xi_{x}^{6}\left(\xi_{x t}-2 \xi_{x x x x}\right)-90 \xi_{x x}^{5}=0
\end{aligned} \\
& \begin{aligned}
\sqrt{h_{0}} \xi_{x} \xi_{x x}^{2}\left(\xi_{t}+\right. & \left.13 \xi_{x x x}\right)-\sqrt{h_{6}} \xi_{x}^{2}\left(\xi_{x t} \xi_{x x}+3 h_{4} \xi_{x x}^{3}+\xi_{t} \xi_{x x x}+4 \xi_{x x x}^{2}+4 \xi_{x x} \xi_{x x x}\right) \\
& +\xi_{x}^{3}\left(h_{4} \xi_{t} \xi_{x x}+\sqrt{h_{6}} \xi_{x x t}+4 h_{4} \xi_{x x} \xi_{x x x}+\sqrt{h_{6}} \xi_{x x x x x}\right) \\
& \quad-\xi_{x}^{4}\left(h_{4} \xi_{x t}+8 h_{2} \sqrt{h_{6}} \xi_{x x}^{2}+h_{4} \xi_{x x x x}\right)-4 h_{2} \sqrt{h_{6}} \xi_{x}^{5} \xi_{x x x x} \\
& +4 h_{2} h_{4} \xi_{x}^{6} \xi_{x x}-6 \sqrt{h_{6}} \xi_{x x}^{4}=0
\end{aligned} \\
& \quad-\xi_{x} \xi_{x x}^{2}\left(\xi_{t}+13 \xi_{x} \xi_{x x x}\right)+\xi_{x}^{2}\left(\xi_{x t} \xi_{x x}+\xi_{t} \xi_{x x x}+4 \xi_{x x x}^{2}+4 \xi_{x x} \xi_{x x x x}\right)+8 h_{2} \xi_{x}^{4} \xi_{x x}^{2} \\
& \left.\quad-\xi_{x x t}^{3}+\xi_{x x x x x x}\right)+4 h_{2} \xi_{x}^{5} \xi_{x x x}+6 \xi_{x x}^{4}=0 \tag{A.6}
\end{align*}
$$

But it is not easy for us to get the explicit expression for ξ from equations (A.5)-(A.8). In order to make the work feasible, we further set

$$
\begin{equation*}
\xi=p+q, \quad p=p(x), \quad q=q(t) \tag{A.9}
\end{equation*}
$$

then equations (A.5)-(A.8) are equivalent to the following equation:

$$
\begin{equation*}
p^{(4)} p^{\prime 2}+p^{\prime \prime}\left(-4 h_{2} p^{\prime 4}-p^{\prime} q^{\prime}+3 p^{\prime \prime 2}-4 p^{\prime} p^{(3)}\right)=0, \quad q^{\prime \prime}=0 \tag{A.10}
\end{equation*}
$$

It is obvious that equation (A.10) has one solution by introducing the constants k, ω, k_{1} and k_{2}

$$
\begin{equation*}
p=k x+k_{1}, \quad q=\omega t+k_{2} \tag{A.11}
\end{equation*}
$$

from which $a_{0}, b_{2}, b_{4}, c_{2}$ and d_{1} can be determined exactly.

Appendix B

If the F given in equation (1) is not a polynomial in real number field, we can use exponential function to change equation (1) into two polynomials in real number field by separating the real and imaginary parts. If the F is not a polynomial of u and its partial derivatives, we can take a proper transformation by introducing a new variable, for example, v to change equation (1) into a polynomial of v and its partial derivatives. We next give three examples to illustrate the effectiveness of our method in solving some special types of NLPDEs as mentioned here.

First, let us consider the variable coefficient nonlinear Schrödinger equation [30], which reads

$$
\begin{equation*}
\mathrm{i} \psi_{z}+\frac{1}{2} \alpha(z) \psi_{t t}+\beta(z)|\psi|^{2} \psi=\mathrm{i} \gamma(z) \psi \tag{B.1}
\end{equation*}
$$

where $\psi=\psi(z, t)$ is a real or complex-valued arbitrary function of z and $t, \alpha(z), \beta(z)$ and $\gamma(z)$ are all arbitrary functions of indicated variable. Equation (B.1) is the nonlinear Schrö dinger equation with gain in the form used in nonlinear fibre optics. In order to obtain exact solution of equation (B.1), we make the transformation

$$
\begin{equation*}
\psi(z, t)=A(z, t) \exp [\mathrm{i} \theta(z, t)] \tag{B.2}
\end{equation*}
$$

where $A(z, t)$ and $\theta(z, t)$ are amplitude and phase functions, respectively. Substituting (B.2) into equation (B.1) and separating the real and imaginary parts, we obtain

$$
\begin{align*}
& -A \theta_{z}+\frac{1}{2} \alpha(z)\left(A_{t t}-A \theta_{t}^{2}\right)+\beta(z) A^{3}=0 \tag{B.3}\\
& A_{z}+\frac{1}{2} \alpha(z)\left(2 A_{t} \theta_{t}+A \theta_{t t}\right)-\gamma(z) A=0 \tag{B.4}
\end{align*}
$$

Balancing $A_{t t}$ and A^{3} in equation (B.3), we have $n=2$. We assume that equations (B.3) and (B.4) have the formal solution expressed by

$$
\begin{equation*}
A=a_{0}+\sum_{i=1}^{2}\left\{a_{i} \phi^{-i}(\xi)+b_{i} \phi^{i}(\xi)+c_{i} \phi^{i-1}(\xi) \phi^{\prime}(\xi)+d_{i} \phi^{-i}(\xi) \phi^{\prime}(\xi)\right\} \tag{B.5}
\end{equation*}
$$

where $a_{0}=a_{0}(z, t), a_{i}=a_{i}(z, t), b_{i}=b_{i}(z, t), c_{i}=c_{i}(z, t), d_{i}=d_{i}(z, t)(i=1,2), \xi=$ $p+q, p=p(z), q=q(t)$.

Substituting (B.5) along with (3) into equations (B.3) and (B.4), then collecting the coefficients of $\phi^{j}(\xi) \phi^{\prime l}(\xi)(l=0,1 ; j= \pm 1, \pm 2, \ldots)$ to zero, we get a set of over-determined partial differential equations for $a_{0}, a_{i}, b_{i}, c_{i}, d_{i}, p, q$ and θ as follows:
$c_{2}^{2} \beta(z)\left(3 h_{6} c_{1}+h_{5} c_{2}\right)=0$,
$d_{2}^{2} \beta(z)\left(3 a_{2}^{2}+h_{0} d_{2}^{2}\right)=0, \quad h_{6} c_{2}^{3} \beta(z)=0$,
$c_{1, z}-c_{1} \gamma(z)+b_{1} p^{\prime}+b_{1} \alpha(z) q^{\prime} \theta_{t}+\alpha(z) c_{1, t} \theta_{t}+\frac{1}{2} c_{1} \alpha(z) \theta_{t t}=0$,
$b_{2, z}-b_{2} \gamma(z)+b_{2, t} \alpha(z) \theta_{t}+\frac{1}{2} b_{2} \alpha(z) \theta_{t t}+\frac{1}{2}\left[p^{\prime}+\alpha(z) q^{\prime} \theta_{t}\right]\left(3 h_{3} c_{1}+4 h_{2} c_{2}+2 h_{4} d_{1}+h_{5} d_{2}\right)=0$,
$a_{0, z}-a_{0} \gamma(z)+a_{0, t} \alpha(z) \theta_{t}+\frac{1}{2} a_{0} \alpha(z) \theta_{t t}+\frac{1}{2}\left[p^{\prime}+\alpha(z) q^{\prime} \theta_{t}\right]\left(h_{1} c_{1}-h_{3} d_{2}+2 h_{0} c_{2}\right)=0$,
$d_{2, z}-d_{2} \gamma(z)-a_{1} p^{\prime}-a_{1} \alpha(z) q^{\prime} \theta_{t}+\alpha(z) d_{2, t} \theta_{t}+\frac{1}{2} d_{2} \alpha(z) \theta_{t t}=0$,
$d_{1, z}-d_{1} \gamma(z)+d_{1, t} \alpha(z) \theta_{t}+\frac{1}{2} d_{1} \alpha(z) \theta_{t t}=0$,
$a_{2} \beta(z)\left(a_{2}^{2}+3 h_{0} d_{2}^{2}\right)=0$,
there are totally 48 equations in the set of over-determined partial differential equations, just some simple and central equations are shown here for convenience. Solving the system of over-determined partial differential equations by use of Mathematica, we obtain the following results.

Case 1.1.
$a_{0}=0, \quad a_{1}= \pm \frac{\omega}{2} \sqrt{-\frac{h_{0} \alpha(z)}{\beta(z)}}, \quad a_{2}=0, \quad b_{1}= \pm \frac{\omega}{2} \sqrt{-\frac{h_{4} \alpha(z)}{\beta(z)}}$,

$$
\begin{equation*}
b_{2}=0 \tag{B.6}
\end{equation*}
$$

$c_{1}=0, \quad c_{2}=0, \quad d_{1}= \pm \frac{\omega}{2} \sqrt{-\frac{\alpha(z)}{\beta(z)}}, \quad d_{2}=0$,
$h_{5}=0, \quad h_{6}=0$,
$p=\delta \omega^{2} \sqrt{-\frac{h_{2}}{2} \pm 3 \sqrt{h_{0} h_{4}}} \int \alpha(z) \mathrm{d} z, \quad \theta=-\delta \omega \sqrt{-\frac{h_{2}}{2} \pm 3 \sqrt{h_{0} h_{4}} t}+k_{1}$,
$\gamma(z)=\frac{\beta(z) \alpha^{\prime}(z)-\alpha(z) \beta^{\prime}(z)}{2 \alpha(z) \beta(z)}, \quad \pm h_{3} \sqrt{h_{0}}-h_{1} \sqrt{h_{4}}=0, \quad q=\omega t+k_{2}$,
where $\alpha^{\prime}(z)=\mathrm{d} \alpha(z) / \mathrm{d} z, \beta^{\prime}(z)=\mathrm{d} \beta(z) / \mathrm{d} z, \delta= \pm 1, \omega, k_{1}$ and k_{2} are arbitrary constants. The sign ' \pm ' in a_{1}, b_{1} and d_{1} means that all possible combinations of ' + ' and ' - ' can be taken. If the same sign is used in a_{1}, b_{1}, and $\omega>0$, then ' - ' must be used in p, θ and (B.9). If the same sign is used in a_{1}, b_{1}, and $\omega<0$, then ' + ' must be used in p, θ and (B.9). If different signs are used in a_{1}, b_{1}, and $\omega>0$, then ' + ' must be used in θ, p and (B.9). If different signs are used in a_{1}, b_{1}, and $\omega<0$, then ' - ' must be used in p, θ and (B.9).
Case 1.2.

$$
\begin{gather*}
a_{0}= \pm \frac{h_{3} w}{4 h_{4}} \sqrt{-\frac{h_{4} \alpha(z)}{\beta(z)}}, \quad a_{1}=0, \quad a_{2}=0, \quad b_{1}= \pm \omega \sqrt{-\frac{h_{4} \alpha(z)}{\beta(z)}}, \\
b_{2}=0, \quad c_{1}=0, \tag{B.10}\\
c_{2}=0, \quad d_{1}=0, \quad d_{2}=0, \quad h_{5}=0, \quad h_{6}=0, \\
p=\delta \omega^{2} \sqrt{h_{2}-\frac{3 h_{3}^{2}}{8 h_{4}}} \int \alpha(z) \mathrm{d} z, \quad q=\omega t+k_{2}, \\
\gamma(z)=\frac{\beta(z) \alpha^{\prime}(z)-\alpha(z) \beta^{\prime}(z)}{2 \alpha(z) \beta(z)}, \quad h_{3}^{3}-4 h_{2} h_{3} h_{4}+8 h_{1} h_{4}^{2}=0, \\
\theta=-\delta \omega \sqrt{h_{2}-\frac{3 h_{3}^{2}}{8 h_{4}}} t+k_{1}, \tag{B.12}
\end{gather*}
$$

where $\alpha^{\prime}(z)=\mathrm{d} \alpha(z) / \mathrm{d} z, \beta^{\prime}(z)=\mathrm{d} \beta(z) / \mathrm{d} z, \delta= \pm 1, \omega, k_{1}$ and k_{2} are arbitrary constants.
Case 1.3.

$$
\begin{align*}
& a_{0}=0, \quad a_{1}=0, \quad a_{2}=0, \quad b_{1}=0, \quad b_{2}= \pm \omega \sqrt{-\frac{h_{6} \alpha(z)}{\beta(z)}}, \\
& c_{1}=0, \quad c_{2}=0, \tag{B.13}\\
& d_{1}= \pm \omega \sqrt{-\frac{\alpha(z)}{\beta(z)},} \quad d_{2}=0, \quad h_{0}=0, \quad h_{1}=0, \quad h_{3}=0, \quad h_{5}=0, \\
& p=\delta \omega^{2} \sqrt{-2 h_{2}} \int \alpha(z) \mathrm{d} z, \tag{B.14}\\
& \gamma(z)=\frac{\beta(z) \alpha^{\prime}(z)-\alpha(z) \beta^{\prime}(z)}{2 \alpha(z) \beta(z)}, \quad \theta=-\delta \omega \sqrt{-2 h_{2}} t+k_{1}, \quad q=\omega t+k_{2}, \tag{B.15}
\end{align*}
$$

where $\alpha^{\prime}(z)=\mathrm{d} \alpha(z) / \mathrm{d} z, \beta^{\prime}(z)=\mathrm{d} \beta(z) / \mathrm{d} z, \delta= \pm 1, \omega, k_{1}$ and k_{2} are arbitrary constants.
Case 1.4.

$$
\begin{align*}
& a_{0}= \pm \frac{h_{4} \omega}{2 h_{6}} \sqrt{-\frac{h_{6} \alpha(z)}{\beta(z)}}, \quad a_{1}=0, a_{2}=0, \\
& b_{2}= \pm 2 \omega \sqrt{-\frac{h_{6} \alpha(z)}{\beta(z)}}, \quad c_{1}=0, c_{2}=0, \tag{B.16}\\
& d_{1}=0, d_{2}=0, \quad h_{1}=0, \quad h_{3}=0, \\
& p=\delta \omega^{2} \sqrt{4 h_{2}-\frac{3 h_{4}^{2}}{2 h_{6}}} \int \alpha(z) \mathrm{d} z, \quad q=\omega t+k_{2}, \tag{B.17}
\end{align*}
$$

$$
\begin{gather*}
\gamma(z)=\frac{\beta(z) \alpha^{\prime}(z)-\alpha(z) \beta^{\prime}(z)}{2 \alpha(z) \beta(z)}, \quad h_{4}^{3}-4 h_{2} h_{4} h_{6}+8 h_{0} h_{6}^{2}=0, \\
\theta=-\delta \omega \sqrt{4 h_{2}-\frac{3 h_{4}^{2}}{2 h_{6}}} t+k_{1}, \tag{B.18}
\end{gather*}
$$

where $\alpha^{\prime}(z)=\mathrm{d} \alpha(z) / \mathrm{d} z, \beta^{\prime}(z)=\mathrm{d} \beta(z) / \mathrm{d} z, \delta= \pm 1, \omega, k_{1}$ and k_{2} are arbitrary constants.
From (15), (B.2), (B.5) and case 1.3, we obtain exact solution of equation (B.1):

$$
\begin{aligned}
& \psi(z, t)=\omega \sqrt{-\frac{\alpha(z)}{\beta(z)}}\left[\frac{(\mp 1 \mp \varepsilon) h_{2} \sqrt{h_{6}} \sec ^{2}\left(\xi+\xi_{0}\right)}{h_{4}+2 \varepsilon \sqrt{-h_{2} h_{6}} \tan \left(\xi+\xi_{0}\right)} \mp \sqrt{-h_{2}} \tan \left(\xi+\xi_{0}\right)\right] \\
& \times \exp \left[\mathrm{i}\left(-\delta \omega \sqrt{-2 h_{2}} t+k_{1}\right)\right]
\end{aligned}
$$

where $\xi=\delta \omega^{2} \sqrt{-2 h_{2}} \int \alpha(z) \mathrm{d} z+\omega t+k_{2}$.
Second, we consider the Tzitzeica-Dodd-Bullough equation [31]:

$$
\begin{equation*}
u_{x t}=\mathrm{e}^{u}+\mathrm{e}^{-2 u} \tag{B.19}
\end{equation*}
$$

which plays a significant role in many scientific applications such as solid-state physics, nonlinear optics and quantum field theory. By making the transformation

$$
\begin{equation*}
v(x, t)=\mathrm{e}^{-u}, \quad u(x, t)=\operatorname{arcsinh}\left[\frac{v^{-1}-v}{2}\right], \tag{B.20}
\end{equation*}
$$

equation (B.19) becomes

$$
\begin{equation*}
-v v_{x t}+v_{x} v_{t}-v^{3}-v^{4}=0 \tag{B.21}
\end{equation*}
$$

Balancing $v v_{x t}$ and v^{4} in equation (B.21), we have $n=2$. We assume equation (B.21) has solution in the form:
$v=a_{0}+\sum_{i=1}^{2}\left\{a_{i} \phi^{-i}(\xi)+b_{i} \phi^{i}(\xi)+c_{i} \phi^{i-1}(\xi) \phi^{\prime}(\xi)+d_{i} \phi^{-i}(\xi) \phi^{\prime}(\xi)\right\}$,
where $a_{0}=a_{0}(t), a_{i}=a_{i}(t), b_{i}=b_{i}(t), c_{i}=c_{i}(t), d_{i}=d_{i}(t)(i=1,2), \xi=\xi(x, t)$.
Substituting equation (B.22) along with equation (3) into equation (B.21), then collecting the coefficients of $\phi^{j}(\xi) \phi^{\prime l}(\xi)(l=0,1 ; j= \pm 1, \pm 2, \ldots)$ to zero, we get a set of overdetermined partial differential equations for $a_{0}, a_{i}, b_{i}, c_{i}, d_{i}$ and ξ. There are totally 46 equations in the set of over-determined partial differential equations, we omit them here for convenience. Solving the system of over-determined partial differential equations by use of Mathematica, we obtain the following results.

Case 2.1.
$a_{0}=-\frac{1}{2}, \quad a_{1}=0, \quad a_{2}=0, \quad b_{1}= \pm \frac{1}{2} \sqrt{\frac{h_{4}}{h_{2}}}, \quad b_{2}=0$,

$$
\begin{equation*}
c_{1}=0, \quad c_{2}=0 \tag{B.23}
\end{equation*}
$$

$$
\begin{gather*}
d_{1}= \pm \frac{1}{2} \sqrt{\frac{1}{h_{2}}}, \quad d_{2}=0, \quad h_{0}=0, \quad h_{1}=0, \quad h_{5}=0, \\
h_{6}=0, \quad \xi=k x-\frac{1}{h_{2} k} t+c \tag{B.24}
\end{gather*}
$$

where c is an arbitrary constant, k is a nonzero constant. The sign ' \pm ' in b_{1} and d_{1} means that all possible combinations of ' + ' and ' - ' can be taken.

Case 2.2.
$a_{0}=-\frac{1}{2}, \quad a_{1}=-\frac{1}{4 h_{3} k \omega}, \quad a_{2}=0, \quad b_{1}=0$,

$$
\begin{equation*}
b_{2}=0, \quad c_{1}=0 \tag{B.25}
\end{equation*}
$$

$c_{2}=0, \quad d_{1}= \pm \frac{1}{2} \sqrt{-k \omega}, \quad d_{2}=0, \quad h_{0}=-\frac{1}{4 h_{3}^{2} k^{3} \omega^{3}}$,

$$
\begin{equation*}
h_{1}=-\frac{3}{4 h_{3} k^{2} \omega^{2}} \tag{B.26}
\end{equation*}
$$

$h_{2}=0, \quad h_{4}=0, \quad h_{5}=0, \quad h_{6}=0, \quad \xi=k x+\omega t+c$,
where c is an arbitrary constant, k and ω are nonzero constants.
Case 2.3.
$a_{0}=-\frac{1}{2}, \quad a_{1}=0, \quad a_{2}=0, \quad b_{1}=0, \quad b_{2}= \pm \sqrt{-h_{6} k \omega}$,

$$
\begin{equation*}
c_{1}=0, \quad c_{2}=0 \tag{B.28}
\end{equation*}
$$

$$
\begin{align*}
& d_{1}= \pm \sqrt{-k \omega}, \quad d_{2}=0, \quad h_{1}=0, \quad h_{3}=0, \quad h_{5}=0 \\
& h_{0}= \pm \frac{\left(1+4 h_{2} k \omega\right) \sqrt{-h_{6} k \omega}}{16 h_{6} k^{2} \omega^{2}}, \tag{B.29}\\
& \left(h_{2}+\frac{1}{4 k \omega}\right)\left(h_{2}-\frac{3 h_{6} \pm 4 h_{4} \sqrt{-h_{6} k \omega}}{4 h_{6} k \omega}\right)=0, \quad \xi=k x+\omega t+c, \tag{B.30}
\end{align*}
$$

where c is an arbitrary constant, k and ω are nonzero constants. The sign ' \pm ' in b_{2} and d_{1} means that all possible combinations of ' + ' and ' - ' can be taken. If ' + ' is used in b_{2}, then ' + ' must be used in h_{0} and (B.30). If ' - ' is used in b_{2}, then ' - ' must be used in h_{0} and (B.30). Hereafter, the sign ' \pm ' always stands for this meaning in the similar circumstances.

If we use case 2.3 with $h_{0} \neq 0$ to search for solution of equation (B.19), then from equations (B.29) and (B.30) and the relation of the values of h_{0} and h_{6} in case I, which reads

$$
\begin{equation*}
h_{0}=\frac{8 h_{2}^{2}}{27 h_{4}}, \quad h_{6}=\frac{h_{4}^{2}}{4 h_{2}} \tag{B.31}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
h_{2}=-\frac{9}{4 k \omega}, \tag{B.32}
\end{equation*}
$$

and the condition that if ' + ' is used in equation (B.30) then $h_{4}<0$, if ' - ' is used in equation (B.30) then $h_{4}>0$.

From equations (B.29) and (B.32), we get $h_{2}>0$ which leads to $h_{4}<0$ if we use case I. Thus, from equations (10), (B.20), (B.22) and (B.32) we obtain exact solution of equation (B.19):

$$
u(x, t)=\operatorname{arcsinh}\left[\frac{v^{-1}-v}{2}\right]
$$

with

$$
\begin{aligned}
& v=-\frac{1}{2}-\frac{\cot ^{2}\left(\frac{\varepsilon}{2} \sqrt{-\frac{3}{k \omega}}\left(\xi+\xi_{0}\right)\right)}{3-\cot \left(\frac{\varepsilon}{2} \sqrt{-\frac{3}{k \omega}}\left(\xi+\xi_{0}\right)\right)^{2}} \\
& \mp \frac{3 \sqrt{3} \varepsilon \sin \left(\varepsilon \sqrt{-\frac{3}{k \omega}}\left(\xi+\xi_{0}\right)\right)\left[3-\cot ^{2}\left(\frac{\varepsilon}{2} \sqrt{-\frac{3}{k \omega}}\left(\xi+\xi_{0}\right)\right)\right]}{4 \cot ^{2}\left(\frac{\varepsilon}{2} \sqrt{-\frac{3}{k \omega}}\left(\xi+\xi_{0}\right)\right)\left[1-2 \cos \left(\varepsilon \sqrt{-\frac{3}{k \omega}}\left(\xi+\xi_{0}\right)\right)\right]^{2}},
\end{aligned}
$$

where $\xi=k x+\omega t+c$.
If we use case 2.3 with $h_{0}=0$ to obtain the solution of equation (B.19), then we get

$$
\begin{equation*}
h_{2}=-\frac{1}{4 k \omega} . \tag{B.33}
\end{equation*}
$$

From equations (13), (B.20), (B.22), (B.33) and case 2.3, we obtain exact solution of equation (B.19):

$$
u(x, t)=\operatorname{arcsinh}\left[\frac{v^{-1}-v}{2}\right]
$$

with
$v=-\frac{1}{2}+\frac{(\pm 1 \pm \varepsilon) \sqrt{h_{6}} \operatorname{sech}^{2}\left(\frac{1}{2} \sqrt{-\frac{1}{k \omega}}\left(\xi+\xi_{0}\right)\right)}{4\left[h_{4} \sqrt{-k \omega}-\varepsilon \sqrt{h_{6}} \tanh \left(\frac{1}{2} \sqrt{-\frac{1}{k \omega}}\left(\xi+\xi_{0}\right)\right)\right]} \mp \frac{1}{2} \tanh \left(\frac{1}{2} \sqrt{-\frac{1}{k \omega}}\left(\xi+\xi_{0}\right)\right)$,
where $\xi=k x+\omega t+c$.
Third, for the sine-Gordon equation [28]:

$$
\begin{equation*}
u_{x t}=\sin u \tag{B.34}
\end{equation*}
$$

which arises classically in the study of differential geometry in mathematics and arises in the study of Josephson junctions, models of particle physics, stability of fluid motions in physics. We make the following transformation

$$
\begin{equation*}
v(x, t)=\sin \left[\frac{1}{2} u(x, t)\right], \quad u(x, t)=2 \arcsin [v(x, t)], \tag{B.35}
\end{equation*}
$$

then equation (B.34) becomes

$$
\begin{equation*}
v^{2} v_{x t}+v_{x t}-v v_{x} v_{t}-v+2 v^{3}-v^{5}=0 \tag{B.36}
\end{equation*}
$$

Balancing $v^{2} v_{x t}$ and v^{5} in equation (B.36), we have $n=2$. We assume equation (B.36) has solution in the form:
$v=a_{0}+\sum_{i=1}^{2}\left\{a_{i} \phi^{-i}(\xi)+b_{i} \phi^{i}(\xi)+c_{i} \phi^{i-1}(\xi) \phi^{\prime}(\xi)+d_{i} \phi^{-i}(\xi) \phi^{\prime}(\xi)\right\}$,
where $a_{0}=a_{0}(t), a_{i}=a_{i}(t), b_{i}=b_{i}(t), c_{i}=c_{i}(t), d_{i}=d_{i}(t)(i=1,2), \xi=\xi(x, t)$.
By the same manipulation as illustrated above, we obtain the following results.
Case 3.1.

$$
\begin{array}{ll}
a_{0}= \pm 1, & a_{1}=0, \\
c_{2}=0, & a_{2}=0, \\
c_{1}=0, \\
d_{2}=0, & b_{1}= \pm \sqrt{\frac{h_{4}}{h_{2}}}, \quad b_{2}=0, \quad c_{1}=0, \tag{B.39}\\
h_{0}=0, \quad h_{1}=0, \\
\xi=k x-\frac{4}{h_{2} k} t+c,
\end{array}
$$

where k is a nonzero constant, c is an arbitrary constant.

Case 3.2.
$a_{0}=0, \quad a_{1}=0, \quad a_{2}=0, \quad b_{1}=0, \quad b_{2}=0, \quad c_{1}=0, \quad c_{2}=0$,
$d_{1}= \pm \sqrt{-k \omega}, \quad d_{2}=0, \quad h_{1}=0, \quad h_{3}=0, \quad h_{5}=0, \quad h_{6}=0$,

$$
\begin{equation*}
\xi=k x+\omega t+c, \tag{B.41}
\end{equation*}
$$

where c is an arbitrary constant, k and ω are nonzero constants which are determined by

$$
\begin{equation*}
1+2 h_{2} k \omega+h_{2}^{2} k^{2} \omega^{2}-4 h_{0} h_{4} k^{2} \omega^{2}=0 \tag{B.42}
\end{equation*}
$$

Case 3.3.
$a_{0}= \pm 1, \quad a_{1}= \pm \frac{4 h_{0}}{h_{1}}, \quad a_{2}=0, \quad b_{1}=0, \quad b_{2}=0, \quad c_{1}=0$,

$$
\begin{equation*}
c_{2}=0, \quad d_{1}=0 \tag{B.43}
\end{equation*}
$$

$d_{2}=0, \quad h_{2}=0, \quad h_{4}=0, \quad h_{5}=0, \quad h_{6}=0, \quad h_{1}^{3}+8 h_{0}^{2} h_{3}=0$, $\xi=k x-\frac{16 h_{0}}{h_{1}^{2} k} t+c$,
where c is an arbitrary constant, k is a nonzero constant.
Case 3.4.
$a_{0}= \pm \frac{\sqrt{5}}{5}, \quad a_{1}= \pm \frac{4 \sqrt{5} h_{0}}{5 h_{1}}, \quad a_{2}=0, \quad b_{1}=0, \quad b_{2}=0, \quad c_{1}=0$,
$c_{2}=0, \quad d_{1}=0$,
$d_{2}=0, \quad h_{2}=0, \quad h_{4}=0, \quad h_{5}=0, \quad h_{6}=0, \quad h_{1}^{3}+8 h_{0}^{2} h_{3}=0$,
$\xi=k x-\frac{16 h_{0}}{5 h_{1}^{2} k} t+c$,
where c is an arbitrary constant, k is a nonzero constant.
Case 3.5.
$a_{0}=0, \quad a_{1}=0, \quad a_{2}=0, \quad b_{1}=0, \quad b_{2}= \pm \sqrt{\frac{h_{6}}{h_{2}}}$,

$$
\begin{equation*}
c_{1}=0, \quad c_{2}=0 \tag{B.47}
\end{equation*}
$$

$d_{1}= \pm \sqrt{\frac{1}{h_{2}}}, \quad d_{2}=0, \quad h_{0}=0, \quad h_{1}=0, \quad h_{3}=0, \quad h_{5}=0$,

$$
\begin{equation*}
\xi=k x-\frac{1}{h_{2} k} t+c \tag{B.48}
\end{equation*}
$$

where c is an arbitrary constant, k is a nonzero constant.

Case 3.6.
$a_{0}= \pm 1, \quad a_{1}=0, \quad a_{2}=0, \quad b_{1}=0, \quad b_{2}= \pm 2 \sqrt{\frac{h_{6}}{h_{2}}}, \quad c_{1}=0$,

$$
\begin{equation*}
c_{2}=0, \quad d_{1}=0 \tag{B.49}
\end{equation*}
$$

$d_{2}=0, \quad h_{0}=0, \quad h_{1}=0, \quad h_{3}=0, \quad h_{5}=0, \quad h_{4}^{2}-4 h_{2} h_{6}=0$,
$\xi=k x-\frac{1}{h_{2} k} t+c$,
where c is an arbitrary constant, k is a nonzero constant.
From equations (14), (B.35), (B.37) and case 3.5, we obtain exact solution of equation (B.34):
$u(x, t)=2 \arcsin \left\{\frac{(\pm 1 \pm \varepsilon) \sqrt{h_{2} h_{6}} \operatorname{csch}^{2}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)}{\left.h_{2}+2 \varepsilon \sqrt{h_{2} h_{6}} \operatorname{coth}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right]} \mp \operatorname{coth}\left(\sqrt{h_{2}}\left(\xi+\xi_{0}\right)\right)\right\}$,
where $\xi=k x-\frac{1}{h_{2} k} t+c$.

References

[1] Ablowitz M J and Clarkson P A 1991 Soliton, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press)
[2] Hirota R 1971 Phys. Rev. Lett. 271192
[3] Miurs M R 1978 Bachklund Transformation (Berlin: Springer)
[4] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24522
[5] Malfliet W 1992 Am. J. Phys. 60650
[6] Zhang S and Xia T C 2006 Commun. Theor. Phys. (Beijing, China) 45985
[7] Yan C 1996 Phys. Lett. A 22477
[8] Wang M L 1996 Phys. Lett. A 213279
[9] He J H 2005 Chaos Solitons Fractals 26695
[10] He J H 2005 Phys. Lett. A 335182
[11] He J H 2006 Int. J. Modern. Phys. B 201141
[12] He J H 2006 Non-perturbative methods for strongly nonlinear problems Dissertation (Berlin: de-Verlag im Internet GmbH)
[13] He J H and Wu X H 2006 Chaos Solitons Fractals 30700
[14] Abassy T A, El-Tawil M A and Saleh H K 2004 Int J. Nonlinear Sci. Numer. Simul. 5327
[15] Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Phys. Lett. A 28969
[16] Zhou Y B, Wang M L and Wang Y M 2003 Phys. Lett. A 30831
[17] Sheng Z 2006 Chaos Solitons Fractals 301213
[18] Chen Y and Yan Z Y 2006 Appl. Math. Comput. 17785
[19] Chen Y and Wang Q 2006 Appl. Math. Comput. 177396
[20] Hu J Q 2005 Chaos Solitons Fractals 23391
[21] Cheng Y, Wang Q and Li B 2004 Commun. Theor. Phys. (Beijing, China) 42655
[22] Yomba E 2006 Chaos Solitons Fractals 27187
[23] Zhang S and Xia T C 2006 Phys. Lett. A 356119
[24] Sirendaoreji and Sun J 2003 Phys. Lett. A 309387
[25] Sirendaoreji 2004 Chaos Solitons Fractals 19147
[26] Xu G Q and Li Z B 2005 Chaos Solitons Fractals 24549
[27] Liu C P and Liu X P 2006 Phys. Lett. A 348222
[28] Sirendaoreji 2006 Phys. Lett. A 356124
[29] Huang D J, Li D S and Zhang H Q 2007 Chaos Solitons Fractals 31586
[30] Kruglov V I, Peacock A C and Harvey J D 2003 Phys. Rev. Lett. 90113902
[31] Wazwaz A M 2005 Chaos Solitons Fractals 2555

