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Abstract
A generalized auxiliary equation method is proposed to construct more general
exact solutions of nonlinear partial differential equations. With the aid of
symbolic computation, we choose the (2+1)-dimensional asymmetric Nizhnik–
Novikov–Vesselov equations to illustrate the validity and advantages of the
method. As a result, many new and more general exact non-travelling wave
and coefficient function solutions are obtained including soliton-like solutions,
triangular-like solitions, single and combined non-degenerate Jacobi elliptic
doubly-like periodic solutions, and Weierstrass elliptic doubly-like periodic
solutions.

PACS numbers: 02.30.Jr, 04.20.Jb, 05.45.Yv

1. Introduction

It is well known that nonlinear complex physical phenomena are related to nonlinear partial
differential equations (NLPDEs) which are involved in many fields from physics to biology,
chemistry, mechanics, etc. As mathematical models of the phenomena, the investigation of
exact solutions of NLPDEs will help one to understand these phenomena better. With the
development of soliton theory, various methods for obtaining exact solutions of NLPDEs
have been presented, such as the inverse scattering method [1], Hirota’s bilinear method [2],
Bäcklund transformation [3], Painlevé expansion [4], tanh function method [5, 6], sine–cosine
method [7], homogenous balance method [8], homotopy perturbation method [9], variational
method [10], asymptotic methods [11], non-perturbative methods [12], Exp-function method
[13], Adomian Pade approximation [14], Jacobi elliptic function expansion method [15],
F-expansion method [16, 17], Weierstrass semi-rational expansion method [18], unified
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rational expansion method [19], algebraic method [20–23], auxiliary equation method [24–27]
and so on. Recently, Sirendaoreji [28] and Huang et al [29], respectively, proposed a new
auxiliary equation method by introducing a new first-order nonlinear ordinary differential
equation with six-degree nonlinear term and its solutions to construct exact travelling wave
solutions of NLPDEs in a unified way.

The present paper is motivated by the desire to generalize the work done in [20–29] to
construct new and more general exact solutions which contain not only the results obtained
by using the methods in [20–29] but also a series of new and more general exact solutions,
in which the restriction on ξ as merely a linear function and the restriction on coefficients
being constants are removed. For illustration, we apply this method to the (2+1)-dimensional
asymmetric Nizhnik–Novikov–Vesselov equations and successfully obtain many new and
more general exact solutions.

The rest of this paper is organized as follows: in section 2, we give the description
of the generalized auxiliary equation method; in section 3, we apply this method to the
(2+1)-dimensional asymmetric Nizhnik–Novikov–Vesselov equations; in section 4, some
conclusions are given.

2. A generalized auxiliary equation method

In this section, we outline a generalized auxiliary equation method. For a given NLPDE with
independent variables x = (t, x1, x2, . . . , xm) and dependent variable u:

F
(
u, ut , ux1 , ux2 , . . . , uxm

, ux1t , ux2t . . . , uxmt , utt , ux1x1 , ux2x2 , . . . , uxmxm
, . . .

) = 0, (1)

we seek its solutions in the more general form:

u = a0 +
n∑

i=1

{aiφ
−i (ξ ) + biφ

i(ξ) + ciφ
i−1(ξ)φ′(ξ) + diφ

−i (ξ )φ′(ξ)}, (2)

with φ(ξ) satisfying the new auxiliary equation:

φ′2(ξ) =
(

dφ

dξ

)2

= h0 + h1φ(ξ) + h2φ
2(ξ) + h3φ

3(ξ) + h4φ
4(ξ) + h5φ

5(ξ) + h6φ
6(ξ), (3)

where a0 = a0(x), ai = ai(x), bi = bi(x), ci = ci(x), di = di(x)(i = 1, 2, . . . , n) and
ξ = ξ(x) are functions to be determined, hj (j = 0, 1, 2 . . . , 6) are real constants. To
determine u explicitly, we take the following four steps.

Step 1. Determine the integer n. Substituting (2) along with (3) into equation (1) and balancing
the highest order partial derivative with the nonlinear terms in equation (1), we then obtain the
value of n. For example, in the case of KdV equation:

ut + 6uux + uxxx = 0, (4)

we have n = 4.

Step 2. Derive a system of equations. Substituting (2) given the value of n obtained in
step 1 along with (3) into equation (1), collecting coefficients of φj (ξ)φ′l(ξ ) (l = 0, 1; j =
0,±1,±2, . . .), then setting each coefficient to zero, we can derive a set of over-determined
partial differential equations for a0, ai, bi, ci, di and ξ .

Step 3. Solve the system of equations. Solving the system of over-determined partial
differential equations obtained in step 2 by use of Mathematica, we can obtain the explicit
expressions for a0, ai, bi, ci, di and ξ .

Step 4. Obtain exact solutions. By using the results obtained in the above steps, we can derive a
series of fundamental solutions of equation (1) depending on the solution φ(ξ) of equation (3).
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By choosing the different values of hj (j = 0, 1, 2 . . . , 6), equation (3) has many kinds of
special solutions. Some of them are listed in [22] under the condition h5 = h6 = 0. In order
to find the solutions with h6 �= 0 of equation (3) conveniently, we set

φ(ξ) = ϕ1/2(ξ), (5)

then equation (3) becomes

ϕ′2(ξ) =
(

dϕ

dξ

)2

= 4(h0ϕ(ξ) + h1ϕ
3/2(ξ)

+ h2ϕ
2(ξ) + h3ϕ

5/2(ξ) + h4ϕ
3(ξ) + h5ϕ

7/2(ξ) + h6ϕ
4(ξ)). (6)

With the aid of equations (5) and (6), we can easily find some special solutions with
h6 �= 0 of equation (3), which are listed as follows.

Case I. Suppose that h1 = h3 = h5 = 0, h0 = 8h2
2

27h4
and h6 = h2

4
4h2

.

(i) If h2 < 0 and h4 > 0, then equation (3) has the following solutions (here and thereafter
ε = ±1):

φ(ξ) =
{
− 8h2 tanh2(ε

√−h2/3(ξ + ξ0))

3h4[3 + tanh2(ε
√−h2/3(ξ + ξ0))]

}1/2

, (7)

φ(ξ) =
{
− 8h2 coth2(ε

√−h2/3(ξ + ξ0))

3h4[3 + coth2(ε
√−h2/3(ξ + ξ0))]

}1/2

. (8)

(ii) If h2 > 0 and h4 < 0, then equation (3) has the following solutions:

φ(ξ) =
{

8h2 tan2(ε
√

h2/3(ξ + ξ0))

3h4[3 − tan2(ε
√

h2/3(ξ + ξ0))]

}1/2

, (9)

φ(ξ) =
{

8h2 cot2(ε
√

h2/3(ξ + ξ0))

3h4[3 − cot2(ε
√

h2/3(ξ + ξ0))]

}1/2

. (10)

Case II. Suppose that h0 = h1 = h3 = h5 = 0 and h6 �= 0.

(i) If h2 > 0, then equation (3) has the following solutions:

φ(ξ) =
{
− h2h4 sech2(

√
h2(ξ + ξ0))

h2
4 − h2h6[1 + ε tanh(

√
h2(ξ + ξ0))]2

}1/2

, (11)

φ(ξ) =
{

h2h4 csch2(
√

h2(ξ + ξ0))

h2
4 − h2h6[1 + ε coth(

√
h2(ξ + ξ0))]2

}1/2

. (12)

(ii) If h2 > 0 and h6 > 0, then equation (3) has the following solutions:

φ(ξ) =
{
− h2 sech2(

√
h2(ξ + ξ0))

h4 + 2ε
√

h2h6 tanh(
√

h2(ξ + ξ0))

}1/2

, (13)

φ(ξ) =
{

h2 csch2(
√

h2(ξ + ξ0))

h4 + 2ε
√

h2h6 coth(
√

h2(ξ + ξ0))

}1/2

. (14)
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(iii) If h2 < 0 and h6 > 0, then equation (3) has the following solutions:

φ(ξ) =
{
− h2 sec2(

√−h2(ξ + ξ0))

h4 + 2ε
√−h2h6 tan(

√−h2(ξ + ξ0))

}1/2

, (15)

φ(ξ) =
{
− h2 csc2(

√−h2(ξ + ξ0))

h4 + 2ε
√−h2h6 cot(

√−h2(ξ + ξ0))

}1/2

. (16)

Case III. Suppose that h0 = h1 = h3 = h5 = 0, h6 �= 0 and h2
4 − 4h2h6 > 0.

(i) If h2 > 0, then equation (3) has the following solution:

φ(ξ) =

 2h2 sech(2

√
h2(ξ + ξ0))

ε

√
h2

4 − 4h2h6 − h4 sech(2
√

h2(ξ + ξ0))




1/2

. (17)

(ii) If h2 < 0, then equation (3) has the following solutions:

φ(ξ) =

 2h2 sec(2

√−h2(ξ + ξ0))

ε

√
h2

4 − 4h2h6 − h4 sec(2
√−h2(ξ + ξ0))




1/2

, (18)

φ(ξ) =

 2h2 csc(2

√−h2(ξ + ξ0))

ε

√
h2

4 − 4h2h6 − h4 csc(2
√−h2(ξ + ξ0))




1/2

. (19)

(iii) If h2 > 0, h4 < 0 and h6 < 0, then equation (3) has the following solutions:

φ(ξ) =

 2h2 sech2(ε

√
h2(ξ + ξ0))

2
√

h2
4 − 4h2h6 − (√

h2
4 − 4h2h6 + h4

)
sech2(ε

√
h2(ξ + ξ0))




1/2

, (20)

φ(ξ) =

 2h2 csch2(ε

√
h2(ξ + ξ0))

2
√

h2
4 − 4h2h6 +

(√
h2

4 − 4h2h6 − h4
)

csch2(ε
√

h2(ξ + ξ0))




1/2

. (21)

(iv) If h2 < 0, h4 > 0 and h6 < 0, then equation (3) has the following solutions:

φ(ξ) =

 −2h2 sec2(ε

√−h2(ξ + ξ0))

2
√

h2
4 − 4h2h6 − (√

h2
4 − 4h2h6 − h4

)
sec2(ε

√−h2(ξ + ξ0))




1/2

, (22)

φ(ξ) =

 2h2 csc2(ε

√−h2(ξ + ξ0))

2
√

h2
4 − 4h2h6 − (√

h2
4 − 4h2h6 + h4

)
csc2(ε

√−h2(ξ + ξ0))




1/2

. (23)

Case IV. Suppose that h0 = h1 = h3 = h5 = 0, h6 �= 0 and h2
4 − 4h2h6 < 0.

(1) If h2 > 0, then equation (3) has the following solution:

φ(ξ) =

 2h2 csch(2

√
h2(ξ + ξ0))

ε

√
4h2h6 − h2

4 − h4 csch(2
√

h2(ξ + ξ0))




1/2

. (24)
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Case V. Suppose that h0 = h1 = h3 = h5 = 0, h6 �= 0 and h2
4 − 4h2h6 = 0.

(i) If h2 > 0, then equation (3) has the following solutions:

φ(ξ) =
{
−h2

h4
[1 + ε tanh(ε

√
h2(ξ + ξ0))]

}1/2

, (25)

φ(ξ) =
{
−h2

h4
[1 + ε coth(ε

√
h2(ξ + ξ0))]

}1/2

. (26)

3. Application of the method

In this section, we would like to use our method to obtain new and more general exact solutions
of the (2+1)-dimensional asymmetric Nizhnik–Novikov–Vesselov equations:

ut − uxxx − 3(uv)x = 0, (27)

ux − vy = 0. (28)

By using a generalized algebraic method, Chen et al obtained some soliton-like solutions and
triangular-like solitions of equations (27) and (28) in [21].

According to step 1, we get n = 4 for u and v. We assume that equations (27) and (28)
have the following formal solutions.

u = a0 + a1φ
−1(ξ) + a2φ

−2(ξ) + a3φ
−3(ξ) + a4φ

−4(ξ) + b1φ(ξ) + b2φ
2(ξ) + b3φ

3(ξ)

+ b4φ
4(ξ) + c1φ

′(ξ) + c2φ(ξ)φ′(ξ) + c3φ
2(ξ)φ′(ξ) + c4φ

3(ξ)φ′(ξ) + d1φ
−1(ξ)φ′(ξ)

+ d2φ
−2(ξ)φ′(ξ) + d3φ

−3(ξ)φ′(ξ) + d4φ
−4(ξ)φ′(ξ), (29)

v = A0 + A1φ
−1(ξ) + A2φ

−2(ξ) + A3φ
−3(ξ) + A4φ

−4(ξ) + B1φ(ξ) + B2φ
2(ξ) + B3φ

3(ξ)

+ B4φ
4(ξ) + C1φ

′(ξ) + C2φ(ξ)φ′(ξ) + C3φ
2(ξ)φ′(ξ) + C4φ

3(ξ)φ′(ξ) + D1φ
−1(ξ)φ′(ξ)

+ D2φ
−2(ξ)φ′(ξ) + D3φ

−3(ξ)φ′(ξ) + D4φ
−4(ξ)φ′(ξ), (30)

where a0 = a0(y, t), ai = ai(y, t), bi = bi(y, t), ci = ci(y, t), di = di(y, t), A0 = A0(y, t),
Ai = Ai(y, t), Bi = Bi(y, t), Ci = Ci(y, t), Di = Di(y, t) (i = 1, 2, 3, 4), ξ = ρω + η,
ρ = ρ(x), ω = ω(y, t), η = η(y, t).

With the aid of Mathematica, substituting (29) and (30) along with (3) into equations
(27) and (28), then setting each coefficient of φj (ξ)φ′l(ξ ) (l = 0, 1; j = ±1,±2, . . .) to zero,
we get a set of over-determined partial differential equations for a0, ai, bi, ci, di, A0, Ai, Bi ,
Ci,Di , ρ, ω and η as follows:

−30h6ωρ ′(b4C4 + B4c4 + 16h6c4ω
2ρ ′2) = 0,

24h0ωρ ′(a4D4 + A4d4) = 0, d1,t = 0, D1,y = 0,

15ωρ ′[a2A3 + A2a3 + a1A4 + A1a4 + h0(d1D4 + D1d4 + d2D3 + D2d3)

+ h1(d2D4 + D2d4 + d3D3) + h2(d3D4 + D3d4)]

+ 30ω3ρ ′3(2h0a3 + 3h1a4) − 60h0d
2
4ω2ρ ′ρ ′′ = 0,

− 1
2ωρ ′(h1d1 + 2h2d2 + 3h3d3 + 4h4d4)

+ 1
2 (ρωy + ηy)(h1D1 + 2h2D2 + 3h3D3 + 4h4D4) − A1,y = 0,

−24h6ωρ ′(b2C4 + B2c4 + b4C2 + B4c2) − 57
2 h5ωρ ′(b4C4 + B4c4)

+ 15
2 h5ω

3ρ ′3(42h6c3 + 107h5c4) = 0,
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−24h6ωρ ′(b2C4 + B2c4 + b3C3 + B3c3 + b4C2 + B4c2)

− 51
2 h5ωρ ′(b3C4 + B3c4 + b4C3 + B4c3)

− 27h4ωρ ′(b4C4 + B4c4) + 1
4ω3ρ ′3(768h2

6c2 + 2054h5h6c3

+ 1309h2
5c4 + 2688h4h6c4) = 0,

− 1
2ωρ ′(10h6c3 + 11h5c4) − 1

2 (ρωy + ηy)(10h6C3 + 11h5C4) = 0,

4b4ωρ ′ − C4,y − 4B4ρωy − 4B4ηy = 0, −33h6c4C4ωρ ′ = 0,

6h6(c4ωρ ′ − C4ρωy − C4ηy) = 0,

−4(a4ωρ ′ − A4ρωy − A4ηy) = 0,

...

there are totally 66 equations in the set of over-determined partial differential equations, just
some simple and central equations are shown here for convenience. Solving the system of
over-determined partial differential equations by use of Mathematica, we obtain the following
results.

Case 1.

a0 =
( − k2

1k
2
3h2 ± 6k2

1k
2
3

√
h0h4 − 3k4

)
f1(y)

3k1k3
, a1 = −k1k3h1f1(y)

2
,

a2 = −k1k3h0f1(y), (31)

a3 = 0, a4 = 0, b1 = −k1k3h3f1(y)

2
, b2 = −k1k3h4f1(y),

b3 = 0, b4 = 0, (32)

c1 = ±k1k3

√
h4f1(y), c2 = 0, c3 = 0, c4 = 0, d1 = 0,

d2 = ±k1k3

√
h0f1(y), (33)

d3 = 0, d4 = 0, A0 = 3k1k3k4 + f ′
2(t)

3k1k3
, A1 = −k2

1k
2
3h1

2
,

A2 = −k2
1k

2
3h0, A3 = 0, (34)

A4 = 0, B1 = −k2
1k

2
3h3

2
, B2 = −k2

1k
2
3h4, B3 = 0,

B4 = 0, C1 = ±k2
1k

2
3

√
h4, (35)

C2 = 0, C3 = 0, C4 = 0, D1 = 0, D2 = ±k2
1k

2
3

√
h0,

D3 = 0, D4 = 0, (36)

ρ = k1x + k2, ω = k3, η =
∫

f1(y) dy + f2(t), h5 = 0,

h6 = 0, ±h3

√
h0 − h1

√
h4 = 0, (37)

where f1(y) and f2(t) are arbitrary functions of y and t respectively, f ′
2(t) = df2(t)/dt, k1

and k3 are nonzero constants, k2 and k4 are arbitrary constants. The sign ‘±’ in C1 and D2

means that all possible combinations of ‘+’ and ‘−’ can be taken. If the same sign is used in
C1 and D2, then ‘+’ must be used in a0 and ‘−’ must be used in (37). If different signs are



A generalized auxiliary equation method and its application 233

used in C1 and D2, then ‘−’ must be used in a0 and ‘+’ must be used in (37). Furthermore, the
same sign must be used in c1 and C1. Also the same sign must be use in d2 and D2. Hereafter,
the sign ‘±’ always stands for this meaning in the similar circumstances.

Case 2.

a0 = −
(
3k4 + k2

1k
2
3h2

)
f1(y)

3k1k3
, a1 = 0, a2 = 0, a3 = 0, a4 = 0,

b1 = −k1k3h3f1(y)

2
, (38)

b2 = −k1k3h4f1(y), b3 = 0, b4 = 0, c1 = ±k1k3

√
h4f1(y),

c2 = 0, c3 = 0, (39)

c4 = 0, d1 = 0, d2 = 0, d3 = 0, d4 = 0,

A0 = 3k1k3k4 + f ′
2(t)

3k1k3
, A1 = 0, A2 = 0, (40)

A3 = 0, A4 = 0, B1 = −k2
1k

2
3h3

2
, B2 = −k2

1k
2
3h4, B3 = 0,

B4 = 0, C1 = ±k2
1k

2
3

√
h4, (41)

C2 = 0, C3 = 0, C4 = 0, D1 = 0, D2 = 0, D3 = 0,

D4 = 0, (42)

ρ = k1x + k2, ω = k3, η =
∫

f1(y) dy + f2(t), h5 = 0, h6 = 0,

(43)

where f1(y) and f2(t) are arbitrary functions of y and t respectively, f ′
2(t) = df2(t)/dt, k1

and k3 are nonzero constants, k2 and k4 are arbitrary constants.

Case 3.

a0 = −
(
4k2

1k
2
3h2 + 3k4

)
f1(y)

3k1k3
, a1 = 0, a2 = 0, a3 = 0,

a4 = 0, b1 = 0, (44)

b2 = −2k1k3h4f1(y), b3 = 0, b4 = −4k1k3h6f1(y), c1 = 0,

c2 = ±4k1k3

√
h6f1(y), (45)

c3 = 0, c4 = 0, d1 = 0, d2 = 0, d3 = 0, d4 = 0,

A0 = 3k1k3k4 + f ′
2(t)

3k1k3
, A1 = 0, (46)

A2 = 0, A3 = 0, A4 = 0, B1 = 0, B2 = −2k2
1k

2
3h4,

B3 = 0, B4 = −4k2
1k

2
3h6, (47)

C1 = 0, C2 = ±4k2
1k

2
3

√
h6, C3 = 0, C4 = 0, D1 = 0,

D2 = 0, D3 = 0, D4 = 0, (48)
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ρ = k1x + k2, ω = k3, η =
∫

f1(y) dy + f2(t), h0 = h0,

h1 = 0, h3 = 0, h5 = 0, (49)

where f1(y) and f2(t) are arbitrary functions of y and t respectively, f ′
2(t) = df2(t)/dt, k1

and k3 are nonzero constants, k2 and k4 are arbitrary constants.

Case 4.

a0 = −
(
4k2

1k
2
3h2 + 3k4

)
f1(y)

3k1k3
, a1 = 0, a2 = 0, a3 = 0,

a4 = 0, b1 = 0, (50)

b2 = −4k1k3h4f1(y), b3 = 0, b4 = −8k1k3h6f1(y), c1 = 0,

c2 = 0, c3 = 0, (51)

c4 = 0, d1 = 0, d2 = 0, d3 = 0, d4 = 0,

A0 = 3k1k3k4 + f ′
2(t)

3k1k3
, A1 = 0, (52)

A2 = 0, A3 = 0, A4 = 0, B1 = 0, B2 = −4k2
1k

2
3h4, B3 = 0,

B4 = −8k2
1k

2
3h6, (53)

C1 = 0, C2 = 0, C3 = 0, C4 = 0, D1 = 0, D2 = 0,

D3 = 0, D4 = 0, ρ = k1x + k2, (54)

ω = k3, η =
∫

f1(y) dy + f2(t), h2
4 = 4h2h6, h0 = 0,

h1 = 0, h3 = 0, h5 = 0, (55)

where f1(y) and f2(t) are arbitrary functions of y and t respectively, f ′
2(t) = df2(t)/dt, k1

and k3 are nonzero constants, k2 and k4 are arbitrary constants.
From (29) and (30), cases 1–2 and cases I–V in [22], we can obtain many kinds of solutions

of equations (27) and (28) depending on the special choice for hi(i = 0, 1, 2, . . . , 6).

3.1. If h0 = r2, h1 = 2rp, h2 = 2rq + p2, h3 = 2pq, h4 = q2, h5 = h6 = 0, then φ(ξ) is one of
the 24 φI

l (l = 1, 2, . . . , 24)

For example, if we select l = 10, from case 1 we obtain soliton-like solutions of equations
(27) and (28):

u =
[
k2

1k
2
3(−2qr − p2 ± 6|qr|) − 3k4

]
f1(y)

3k1k3
− 1

2
k1k3pf1(y) sech(Mξ)

× [M sinh(Mξ) − p cosh(Mξ) ± iM] − 1

4
k1k3f1(y) sech2(Mξ)

× [M sinh(Mξ) − p cosh(Mξ) ± iM]2 − 2k1k3pqrf1(y) cosh(Mξ)

[M sinh(Mξ) − p cosh(Mξ) ± iM]
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− 4k1k3q
2r2f1(y) cosh2(Mξ)

[M sinh(Mξ) − p cosh(Mξ) ± iM]2
± 2k1k3|q|rM2f1(y)[−1 ± i sinh(Mξ)]

[M sinh(Mξ) − p cosh(Mξ) ± iM]2

± 1

2
k1k3εM

2f1(y) sech2(Mξ)[−1 ± i sinh(Mξ)],

v = 3k1k3k4 + f ′
2(t)

3k1k3
− 1

2
k2

1k
2
3p sech(Mξ)[M sinh(Mξ) − p cosh(Mξ) ± iM]

− 1

4
k2

1k
2
3 sech2(Mξ)[M sinh(Mξ) − p cosh(Mξ) ± iM]2

− 2k2
1k

2
3pqr cosh(Mξ)

[M sinh(Mξ) − p cosh(Mξ) ± iM]
− 4k2

1k
2
3q

2r2 cosh2(Mξ)

[M sinh(Mξ) − p cosh(Mξ) ± iM]2

± 2k2
1k

2
3 |q|rM2[−1 ± i sinh(Mξ)]

[M sinh(Mξ) − p cosh(Mξ) ± iM]2
± 1

2
k2

1k
2
3εM

2 sech2(Mξ)[−1 ± i sinh(Mξ)],

where ξ = (k1x + k2)k3 +
∫

f1(y) dy + f2(t),M =
√

p2 − 4qr . If ‘+’ is used in a0, then
qr < 0. If ‘−’ is used in a0, then qr > 0.

3.2. If h0 = r2, h1 = 2rp, h2 = h5 = h6 = 0, h3 = 2pq, h4 = q2 and p2 = −2rq, then φ(ξ) is
one of the 12 φII

l (l = 1, 2, . . . , 12)

For example, if we select l = 12, from case 1 we obtain soliton-like solutions of equations
(27) and (28):

u = −2k1k3qr + k4f1(y)

k1k3
− 1

4
k1k3ε

√
−2qrf1(y) sech(Nξ) csch(Nξ)

×[∓2
√

−2qr sinh(Nξ) cosh(Nξ) + 8N cosh2(Nξ) − 4N ]

− 1

16
k1k3f1(y) sech2(Nξ) csch2(Nξ)[∓2

√
−2qr sinh(Nξ) cosh(Nξ)

+8N cosh2(Nξ) − 4N ]2 − 4k1k3qrε
√−2qrf1(y) cosh(Nξ) sinh(Nξ)

∓2
√−2qr sinh(Nξ) cosh(Nξ) + 8N cosh2(Nξ) − 4N

− 16k1k3q
2r2f1(y)cosh2(Nξ)sinh2(Nξ)

[∓2
√−2qr sinh(Nξ)cosh(Nξ)+8N cosh2(Nξ)−4N ]2

± 3k1k3|q|rf1(y)

[
√

3cosh(2Nξ)∓sinh(2Nξ)]2

±3k1k3εf1(y)sech2(Nξ)csch2(Nξ)[∓2
√−2qr sinh(Nξ)cosh(Nξ)+8N cosh2(Nξ)−4N ]2

16[
√

3cosh(2Nξ) ∓ sinh(2Nξ)]2
,

v = 3k1k3k4 + f ′
2(t)

3k1k3
− 1

4
k2

1k
2
3ε

√
−2qr sech(Nξ) csch(Nξ)[∓2

√
−2qr sinh(Nξ) cosh(Nξ)

+8N cosh2(Nξ) − 4N ] − 1

16
k2

1k
2
3 sech2(Nξ) csch2(Nξ)[∓2

√
−2qr sinh(Nξ) cosh(Nξ)

+8N cosh2(Nξ) − 4N ]2 − 4k2
1k

2
3qrε

√−2qr cosh(Nξ) sinh(Nξ)

∓2
√−2qr sinh(Nξ) cosh(Nξ) + 8N cosh2(Nξ) − 4N

− 16k2
1k

2
3q

2r2 cosh2(Nξ)sinh2(Nξ)

[∓2
√−2qr sinh(Nξ)cosh(Nξ)+8N cosh2(Nξ)−4N ]2

± 3k2
1k

2
3 |q|r

[
√

3cosh(2Nξ)∓sinh(2Nξ)]2

±3k2
1k

2
3ε sech2(Nξ) csch2(Nξ)[∓2

√−2qr sinh(Nξ) cosh(Nξ) + 8N cosh2(Nξ) − 4N ]2

16[
√

3 cosh(2Nξ) ∓ sinh(2Nξ)]2
,

where ξ = (k1x + k2)k3 +
∫

f1(y) dy + f2(t), N = √−6qr/4, qr < 0.
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3.3. If h0 = h1 = h5 = h6 = 0, h2, h3, h4 are arbitrary constants, then φ(ξ) is one of the ten
φIII

l (l = 1, 2, . . . , 10)

For example, if we select l = 4, then h2 = 4, h3 = 4(d − 2b)/a, h4 = (c2 + 4b2 − 4bd)/a2,
from case 1 we obtain soliton-like solutions of equations (27) and (28):

u = − (4k2
1k

2
3 + 3k4)f1(y)

3k1k3
− 2k1k3(d − 2b)f1(y) csch2(ξ)

b csch2(ξ) + c coth(ξ) + d

− k1k3(c
2 + 4b2 − 4bd)f1(y) csch4(ξ)

[b csch2(ξ) + c coth(ξ) + d]2

∓ 4k1k3ε
√

c2 + 4b2 − 4bdf1(y)[c cosh(2ξ) + d sinh(2ξ)]

[2b − d + d cosh(2ξ) + c sinh(2ξ)]2
,

v = 3k1k3k4 + f ′
2(t)

3k1k3
− 2k2

1k
2
3(d − 2b) csch2(ξ)

b csch2(ξ) + c coth(ξ) + d
− k2

1k
2
3(c

2 + 4b2 − 4bd) csch4(ξ)

[b csch2(ξ) + c coth(ξ) + d]2

∓ 4k2
1k

2
3ε

√
c2 + 4b2 − 4bd[c cosh(2ξ) + d sinh(2ξ)]

[2b − d + d cosh(2ξ) + c sinh(2ξ)]2
,

where ξ = (k1x + k2)k3 +
∫

f1(y) dy + f2(t).

3.4. If h1 = h3 = h5 = h6 = 0, h0, h2, h4 are arbitrary constants, then φ(ξ) is one of the 16
φIV

l (l = 1, 2, . . . , 16)

For example, if we select l = 13, then h0 = 1/4, h2 = (1−2m2)/2, h4 = 1/4, from case 1 we
obtain combined non-degenerative Jacobi elliptic doubly-like periodic solutions of equations
(27) and (28):

u =
[ − k2

1k
2
3(1 − 2m2) ± 3k2

1k
2
3 − 6k4

]
f1(y)

6k1k3
− 1

4

k1k3f1(y)

[ns(ξ) ± cs(ξ)]2

− 1

4
k1k3f1(y)[ns(ξ) ± cs(ξ)]2 ∓ 1

2
k1k3f1(y)[cs(ξ) ds(ξ) ± ns(ξ) ds(ξ)]

± 1

2
k1k3f1(y)

∓ds(ξ)

ns(ξ) ± cs(ξ)
,

v = 3k1k3k4 + f ′
2(t)

3k1k3
− 1

4

k2
1k

2
3

[ns(ξ) ± cs(ξ)]2
− 1

4
k2

1k
2
3[ns(ξ) ± cs(ξ)]2

∓ 1

2
k2

1k
2
3[cs(ξ) ds(ξ) ± ns(ξ) ds(ξ)] ± 1

2
k2

1k
2
3

∓ds(ξ)

ns(ξ) ± cs(ξ)
,

where ξ = (k1x + k2)k3 +
∫

f1(y) dy + f2(t).
In the limit case when m → 1, we obtain combined soliton-like solutions of

equations (27) and (28):

u =
(
k2

1k
2
3 ±3k2

1k
2
3 −6k4

)
f1(y)

6k1k3
− 1

4

k1k3f1(y)

[coth(ξ) ± csch(ξ)]2
− 1

4
k1k3f1(y)[coth(ξ)±csch(ξ)]2

∓ 1

2
k1k3f1(y)[csch2(ξ) ± coth(ξ) csch(ξ)] ± 1

2
k1k3f1(y)

∓csch(ξ)

coth(ξ) ± csch(ξ)
,

v = 3k1k3k4 + f ′
2(t)

3k1k3
− 1

4

k2
1k

2
3

[coth(ξ) ± csch(ξ)]2
− 1

4
k2

1k
2
3[coth(ξ) ± csch(ξ)]2

∓ 1

2
k2

1k
2
3[csch2(ξ) ± coth(ξ) csch(ξ)] ± 1

2
k2

1k
2
3

∓csch(ξ)

coth(ξ) ± csch(ξ)
,

where ξ = (k1x + k2)k3 +
∫

f1(y) dy + f2(t).
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When m → 0, we obtain triangular-like solutions of equations (27) and (28):

u =
( − k2

1k
2
3 ± 3k2

1k
2
3 − 6k4

)
f1(y)

6k1k3
− 1

4

k1k3f1(y)

[csc(ξ) ± cot(ξ)]2
− 1

4
k1k3f1(y)[csc(ξ) ± cot(ξ)]2

∓ 1

2
k1k3f1(y)[cot(ξ) csc(ξ) ± csc2(ξ)] ± 1

2
k1k3f1(y)

∓csc(ξ)

csc(ξ) ± cot(ξ)
,

v = 3k1k3k4 + f ′
2(t)

3k1k3
− 1

4

k2
1k

2
3

[csc(ξ) ± cot(ξ)]2
− 1

4
k2

1k
2
3[csc(ξ) ± cot(ξ)]2

∓ 1

2
k2

1k
2
3[cot(ξ) csc(ξ) ± csc2(ξ)] ± 1

2
k2

1k
2
3

∓csc(ξ)

csc(ξ) ± cot(ξ)
,

where ξ = (k1x + k2)k3 +
∫

f1(y) dy + f2(t).

3.5. If h2 = h4 = h5 = h6 = 0, h0, h1, h3 are arbitrary constants, then φ(ξ) is the only φV
1

From equation (37) we get h0 = 0 or h3 = 0, equations (27) and (28) have not solutions
for this case. Fortunately, from case 2 we obtain Weierstrass elliptic doubly-like periodic
solutions of equations (27) and (28):

u = − k4

k1k3
f1(y) − 1

2
k1k3h3f1(y)℘

(√
h3

2
ξ, g2, g3

)
,

v = 3k1k3k4 + f ′
2(t)

3k1k3
− 1

2
k2

1k
2
3h3℘

(√
h3

2
ξ, g2, g3

)
,

where ξ = (k1x + k2)k3 +
∫

f1(y) dy + f2(t), h3 > 0, g2 = −4h1/h3, g3 = −4h0/h3.
From (29) and (30), cases 3–4 and cases I–V listed in the present paper, we can obtain

many kinds of solutions of equations (27) and (28) depending on the special choice for hi

(i = 0, 1, 2, . . . , 6).

3.6. If h1 = h3 = h5 = 0, h0 = 8h2
2

27h4
and h6 = h2

4
4h2

, then φ(ξ) is one of the (9) and (10)

For example, if we select (9), from case 3 we obtain triangular-like solutions (see figures 1
and 2) of equations (27) and (28):

u = −
(
4k2

1k
2
3h2 + 3k4

)
f1(y)

3k1k3
− 16k1k3h2f1(y) tan2(ε

√
h2/3(ξ + ξ0))

3[3 − tan2(ε
√

h2/3(ξ + ξ0))]

− 64k1k3h2f1(y) tan4(ε
√

h2/3(ξ + ξ0))

9[3 − tan2(ε
√

h2/3(ξ + ξ0))]2
∓ 8k1k3h2εf1(y) sin(2ε

√
h2/3(ξ + ξ0))√

3[1 + 2cos(2ε
√

h2/3(ξ + ξ0))]2
, (56)

v = 3k1k3k4 + f ′
2(t)

3k1k3
− 16k2

1k
2
3h2 tan2(ε

√
h2/3(ξ + ξ0))

3[3 − tan2(ε
√

h2/3(ξ + ξ0))]

− 64k2
1k

2
3h2 tan4(ε

√
h2/3(ξ + ξ0))

9[3 − tan2(ε
√

h2/3(ξ + ξ0))]2
∓ 8k2

1k
2
3h2ε sin(2ε

√
h2/3(ξ + ξ0))√

3[1 + 2 cos(2ε
√

h2/3(ξ + ξ0))]2
, (57)

where ξ = (k1x + k2)k3 +
∫

f1(y) dy + f2(t).

3.7. If h0 = h1 = h3 = h5 = 0 and h6 �= 0, then φ(ξ) is one of the (11)–(19) and (24)

For example, if we select (12), from case 3 we obtain soliton-like solutions of equations (27)
and (28):
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Figure 1. Spatial structure of equation (56) is shown at k1 = k2 = k3 = k4 = ξ0 = ε = 1, h2 = 1,
f1(y) = tanh(y), f2(t) = sech(t), t = 0, and the sign ‘∓’ selected by ‘+’.

u = −
(
4k2

1k
2
3h2 + 3k4

)
f1(y)

3k1k3
− 2k1k3h2h

2
4f1(y) csch2(

√
h2(ξ + ξ0))

h2
4 − h2h6(1 + ε coth(

√
h2(ξ + ξ0)))2

− 4k1k3h
2
2h

2
4h6f1(y) csch4(

√
h2(ξ + ξ0))[

h2
4 − h2h6(1 + ε coth(

√
h2(ξ + ξ0)))2

]2 ± 2k1k3h2h4

√
h2h6f1(y) csch4(

√
h2(ξ + ξ0))

× [2h2h6ε cosh(2
√

h2(ξ + ξ0)) + (2h2h6 − h2
4) sinh(2

√
h2(ξ + ξ0))][

h2
4 − h2h6(1 + ε coth(

√
h2(ξ + ξ0)))2

]2 ,

v = 3k1k3k4 + f ′
2(t)

3k1k3
− 2k2

1k
2
3h2h

2
4 csch2(

√
h2(ξ + ξ0))

h2
4 − h2h6(1 + ε coth(

√
h2(ξ + ξ0)))2

− 4k2
1k

2
3h

2
2h

2
4h6 csch4(

√
h2(ξ + ξ0))[

h2
4 − h2h6(1 + ε coth(

√
h2(ξ + ξ0)))2

]2 ± 2k2
1k

2
3h2h4

√
h2h6 csch4(

√
h2(ξ + ξ0))

× [2h2h6ε cosh(2
√

h2(ξ + ξ0)) + (2h2h6 − h2
4) sinh(2

√
h2(ξ + ξ0))]

[h2
4 − h2h6(1 + ε coth(

√
h2(ξ + ξ0)))2]2

,

where ξ = (k1x + k2)k3 +
∫

f1(y) dy + f2(t).

3.8. If h0 = h1 = h3 = h5 = 0, h6 �= 0 and h2
4 − 4h2h6 = 0, then φ(ξ) is one of the (25)

and (26)

For example, if we select (25), from case 3 we obtain soliton-like solutions of equations (27)
and (28):

u = −
(
4k2

1k
2
3h2 + 3k4

)
f1(y)

3k1k3
+ 2k1k3h2f1(y)[1 + ε tanh(ε

√
h2(ξ + ξ0))]

− k1k3h2f1(y)[1 + ε tanh(ε
√

h2(ξ + ξ0))]
2 ∓ k1k3h2εf1(y) sech2(ε

√
h2(ξ + ξ0)),

v = −3k1k3k4 + f ′
2(t)

3k1k3
+ 2k2

1k
2
3h2[1 + ε tanh(ε

√
h2(ξ + ξ0))]

− k2
1k

2
3h2[1 + ε tanh(ε

√
h2(ξ + ξ0))]

2 ∓ k2
1k

2
3h2ε sech2(ε

√
h2(ξ + ξ0)),

where ξ = (k1x + k2)k3 +
∫

f1(y) dy + f2(t).
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Figure 2. Spatial structure of equation (56) is shown at k1 = k2 = k3 = k4 = ξ0 = ε = 1, h2 = 1,
f1(y) = sin(y), f2(t) = tanh(t), t = 0, and the sign ‘∓’ selected by ‘+’.

From (29) and (30), cases 1–4, we can obtain other exact solutions of equations (27) and
(28), here we omit them for simplicity.

Remark 1. Chen et al obtained only case 2 in [21]. To the best of our knowledge, all the
solutions obtained from cases 1, 3 and 4 are new and have not been reported yet. All the
results reported in this paper have been checked with Mathematica. By using our method, we
can also obtain new and more general exact solutions of the other NLPDEs in [20, 22–29]
including all the solutions given there as special cases of our method. It shows that our method
is more powerful than the methods [20–29] in constructing exact solutions of NLPDEs.

4. Conclusion

In this paper, we have presented a generalized auxiliary equation method to construct more
general exact solutions of NLPDEs, which can be thought of as the expansion of tanh
function method [6], F-expansion method [16, 17], algebraic method [20–23], auxiliary
equation method [24–29]. With the help of Mathematica, our method provides a powerful
mathematical tool to obtain more general exact solutions of a great many NLPDEs in
mathematical physics, such as the (3+1)-dimensional Kadomtsev–Petviashvili equation,
the (2+1)-dimensional Korteweg–de Vries equations, Broer–Kaup–Kupershmidt equations,
breaking soliton equations, Broer–Kaup equations, dispersive long wave equations and so
on. Applying our method to the (2+1)-dimensional asymmetric Nizhnik–Novikov–Vesselov
equations, we have obtained many new and more general exact solutions with two arbitrary
functions. The arbitrary functions in the obtained solutions imply that these solutions have
rich local structures. It may be important to explain some physical phenomena.

It should be noted that more complicated computation is expected than ever before
because of using the general ansatz (2). In general it is very difficult to solve the set of
over-determined partial differential equations obtained in step 3. As the calculation goes on,
in order to drastically simplify the work or make the work feasible, we often choose special
forms for a0, ai, bi, ci, di and ξ on a trial and error basis. In appendix A, the KdV equation
(4) is considered. Besides, for some special types of NLPDEs, such as nonlinear Schrödinger
equation, sine-Gordon equation, Tzitzeica–Dodd–Bullough equation and so on, we can take
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some proper transformations to change them into convenient ones for us to use our method.
In appendix B, three examples are given.
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Appendix A

For the KdV equation (4), we assume the solution of it can be expressed by

u = a0 +
4∑

i=1

{aiφ
−i (ξ ) + biφ

i(ξ) + ciφ
i−1(ξ)φ′(ξ) + diφ

−i (ξ )φ′(ξ)}, (A.1)

where a0 = a0(x, t), ai = ai(x, t), bi = bi(x, t), ci = ci(x, t), di = di(x, t)(i = 1, 2, 3, 4),
ξ = ξ(x, t).

With the aid of Mathematica, substituting (A.1) along with (3) into equation (4), then
collecting the coefficients of φj (ξ)φ′l(ξ )(l = 0, 1; j = ±1,±2, . . .) to zero, we get a set of
over-determined partial differential equations for a0, ai, bi, ci, di , ξ as follows:

33c4ξx(2h6c3 + h5c4) = 0,

6h6c4
(
10b4ξx + 80h6ξ

3
x + c4,x

) = 0, −48h0a4d4ξx = 0,

15ξx

[−h1d
2
3 − h3d

2
4 − 6h1a4ξ

2
x − 2(a1a4 + a2a3 + h0d2d3 + h0d1d4 + h1d2d4 + h2d3d4)

+ 4h0
(
d4ξxx + d4,xξx + a3ξ

2
x

)]
+ 6(a2d4 + a3d3 + a4d2)x = 0,

d1,t + d1,xxx + 6(a0d1 + a1c1 + a2c2 + a3c3 + a4c4 + b1d2 + b2d3 + b3d4)x = 0,

24ξx

[
b2

4 + h6c
2
2 + h4c

2
3 + h2c

2
4 + 2(h6c1c3 + h5c1c4 + h5c2c3 + h4c2c4 + h3c3c4 + h6c4d1)

+ 2h6ξx

(
3c4ξxx + 3c4,xξx + 4b4ξ

2
x

)]
+ 6(b4c4)x = 0,

−24ξx

(
a2

4 + h0d
2
4

) = 0, 36h6c
2
4ξx = 0,

...

there are totally 43 equations in the set of over-determined partial differential equations, just
some simple and central equations are shown here for convenience. However, it is very difficult
for us to get the explicit expressions for a0, ai, bi, ci, di and ξ from the set of over-determined
partial differential equations. For example, one result is obtained as follows:

a0 = −4h2ξ
4
x − ξxξt + 3ξ 2

xx − 4ξxξxxx

6ξ 2
x

, a1 = 0, a2 = 0, a3 = 0,

a4 = 0, b1 = 0, (A.2)

b2 = −2h4ξ
2
x ± 2

√
h6ξxx, b3 = 0, b4 = −4h6ξ

2
x , c1 = 0,

c2 = ±4
√

h6ξ
2
x , c3 = 0, (A.3)

c4 = 0, d1 = −2ξxx, d2 = 0, d3 = 0, d4 = 0, h0 = 0,

h1 = 0, h3 = 0, h5 = 0, (A.4)
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where ξ satisfies

ξxξxx(ξt + 4ξxxx) − ξ 2
x (ξxt + ξxxxx) + 4h2ξ

4
x ξxx − 3ξ 3

xx = 0, (A.5)

15ξxξ
3
xx(ξt + 16ξxxx) − ξ 2

x ξxx

(
ξ 2
t + 15ξxt ξxx + 20ξt ξxxx + 78ξxxξxxxx + 136ξ 2

xxx

)
+ ξ 3

x (2ξt ξxt + 9ξxxξxxt + 11ξxt ξxxx + 5ξt ξxxxx + 50ξxxxξxxxx + 18ξxxξxxxxx)

+ 32h2
2ξ

8
x ξxx − ξ 4

x (ξtt + 5ξxxxt + 4ξxxxxxx) + 4h2ξ
5
x ξxx(ξt + 28ξxxx)

− 4h2ξ
6
x (ξxt − 2ξxxxx) − 90ξ 5

xx = 0, (A.6)√
h0ξxξ

2
xx(ξt + 13ξxxx) −

√
h6ξ

2
x

(
ξxt ξxx + 3h4ξ

3
xx + ξt ξxxx + 4ξ 2

xxx + 4ξxxξxxx

)
+ ξ 3

x (h4ξt ξxx +
√

h6ξxxt + 4h4ξxxξxxx +
√

h6ξxxxxx)

− ξ 4
x (h4ξxt + 8h2

√
h6ξ

2
xx + h4ξxxxx) − 4h2

√
h6ξ

5
x ξxxx

+ 4h2h4ξ
6
x ξxx − 6

√
h6ξ

4
xx = 0, (A.7)

− ξxξ
2
xx(ξt + 13ξxξxxx) + ξ 2

x

(
ξxt ξxx + ξt ξxxx + 4ξ 2

xxx + 4ξxxξxxxx

)
+ 8h2ξ

4
x ξ 2

xx

− ξ 3
x (ξxxt + ξxxxxxx) + 4h2ξ

5
x ξxxx + 6ξ 4

xx = 0. (A.8)

But it is not easy for us to get the explicit expression for ξ from equations (A.5)–(A.8).
In order to make the work feasible, we further set

ξ = p + q, p = p(x), q = q(t), (A.9)

then equations (A.5)–(A.8) are equivalent to the following equation:

p(4)p′2 + p′′(−4h2p
′4 − p′q ′ + 3p′′2 − 4p′p(3)) = 0, q ′′ = 0. (A.10)

It is obvious that equation (A.10) has one solution by introducing the constants k, ω, k1

and k2

p = kx + k1, q = ωt + k2, (A.11)

from which a0, b2, b4, c2 and d1 can be determined exactly.

Appendix B

If the F given in equation (1) is not a polynomial in real number field, we can use exponential
function to change equation (1) into two polynomials in real number field by separating the
real and imaginary parts. If the F is not a polynomial of u and its partial derivatives, we can
take a proper transformation by introducing a new variable, for example, v to change equation
(1) into a polynomial of v and its partial derivatives. We next give three examples to illustrate
the effectiveness of our method in solving some special types of NLPDEs as mentioned here.

First, let us consider the variable coefficient nonlinear Schrödinger equation [30], which
reads

iψz + 1
2α(z)ψtt + β(z)|ψ |2ψ = iγ (z)ψ, (B.1)

where ψ = ψ(z, t) is a real or complex-valued arbitrary function of z and t, α(z), β(z) and
γ (z) are all arbitrary functions of indicated variable. Equation (B.1) is the nonlinear Schrö
dinger equation with gain in the form used in nonlinear fibre optics. In order to obtain exact
solution of equation (B.1), we make the transformation

ψ(z, t) = A(z, t) exp[iθ(z, t)], (B.2)
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where A(z, t) and θ(z, t) are amplitude and phase functions, respectively. Substituting (B.2)
into equation (B.1) and separating the real and imaginary parts, we obtain

−Aθz + 1
2α(z)

(
Att − Aθ2

t

)
+ β(z)A3 = 0, (B.3)

Az + 1
2α(z)(2Atθt + Aθtt ) − γ (z)A = 0. (B.4)

Balancing Att and A3 in equation (B.3), we have n = 2. We assume that equations (B.3)
and (B.4) have the formal solution expressed by

A = a0 +
2∑

i=1

{aiφ
−i (ξ ) + biφ

i(ξ) + ciφ
i−1(ξ)φ′(ξ) + diφ

−i (ξ )φ′(ξ)}, (B.5)

where a0 = a0(z, t), ai = ai(z, t), bi = bi(z, t), ci = ci(z, t), di = di(z, t)(i = 1, 2), ξ =
p + q, p = p(z), q = q(t).

Substituting (B.5) along with (3) into equations (B.3) and (B.4), then collecting the
coefficients of φj (ξ)φ′l(ξ ) (l = 0, 1; j = ±1,±2, . . .) to zero, we get a set of over-determined
partial differential equations for a0, ai, bi, ci, di, p, q and θ as follows:

c2
2β(z)(3h6c1 + h5c2) = 0,

d2
2β(z)

(
3a2

2 + h0d
2
2

) = 0, h6c
3
2β(z) = 0,

c1,z − c1γ (z) + b1p
′ + b1α(z)q ′θt + α(z)c1,t θt + 1

2c1α(z)θtt = 0,

b2,z − b2γ (z)+b2,tα(z)θt + 1
2b2α(z)θtt + 1

2 [p′ +α(z)q ′θt ](3h3c1 +4h2c2 +2h4d1 +h5d2) = 0,

a0,z − a0γ (z) + a0,.tα(z)θt + 1
2a0α(z)θtt + 1

2 [p′ + α(z)q ′θt ](h1c1 − h3d2 + 2h0c2) = 0,

d2,z − d2γ (z) − a1p
′ − a1α(z)q ′θt + α(z)d2,t θt + 1

2d2α(z)θtt = 0,

d1,z − d1γ (z) + d1,tα(z)θt + 1
2d1α(z)θtt = 0,

a2β(z)
(
a2

2 + 3h0d
2
2

) = 0,

...

there are totally 48 equations in the set of over-determined partial differential equations, just
some simple and central equations are shown here for convenience. Solving the system of
over-determined partial differential equations by use of Mathematica, we obtain the following
results.

Case 1.1.

a0 = 0, a1 = ±ω

2

√
−h0α(z)

β(z)
, a2 = 0, b1 = ±ω

2

√
−h4α(z)

β(z)
,

b2 = 0, (B.6)

c1 = 0, c2 = 0, d1 = ±ω

2

√
−α(z)

β(z)
, d2 = 0,

h5 = 0, h6 = 0, (B.7)

p = δω2

√
−h2

2
± 3

√
h0h4

∫
α(z) dz, θ = −δω

√
−h2

2
± 3

√
h0h4t + k1, (B.8)

γ (z) = β(z)α′(z) − α(z)β ′(z)
2α(z)β(z)

, ±h3

√
h0 − h1

√
h4 = 0, q = ωt + k2, (B.9)
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where α′(z) = dα(z)/dz, β ′(z) = dβ(z)/dz, δ = ±1, ω, k1 and k2 are arbitrary constants.
The sign ‘±’ in a1, b1 and d1 means that all possible combinations of ‘+’ and ‘−’ can be taken.
If the same sign is used in a1, b1, and ω > 0, then ‘−’ must be used in p, θ and (B.9). If the
same sign is used in a1, b1, and ω < 0, then ‘+’ must be used in p, θ and (B.9). If different
signs are used in a1, b1, and ω > 0, then ‘+’ must be used in θ , p and (B.9). If different signs
are used in a1, b1, and ω < 0, then ‘−’ must be used in p, θ and (B.9).

Case 1.2.

a0 = ±h3w

4h4

√
−h4α(z)

β(z)
, a1 = 0, a2 = 0, b1 = ±ω

√
−h4α(z)

β(z)
,

b2 = 0, c1 = 0, (B.10)

c2 = 0, d1 = 0, d2 = 0, h5 = 0, h6 = 0,

p = δω2

√
h2 − 3h2

3

8h4

∫
α(z) dz, q = ωt + k2, (B.11)

γ (z) = β(z)α′(z) − α(z)β ′(z)
2α(z)β(z)

, h3
3 − 4h2h3h4 + 8h1h

2
4 = 0,

θ = −δω

√
h2 − 3h2

3

8h4
t + k1, (B.12)

where α′(z) = dα(z)/dz, β ′(z) = dβ(z)/dz, δ = ±1, ω, k1 and k2 are arbitrary constants.

Case 1.3.

a0 = 0, a1 = 0, a2 = 0, b1 = 0, b2 = ±ω

√
−h6α(z)

β(z)
,

c1 = 0, c2 = 0, (B.13)

d1 = ±ω

√
−α(z)

β(z)
, d2 = 0, h0 = 0, h1 = 0, h3 = 0, h5 = 0,

p = δω2
√

−2h2

∫
α(z) dz, (B.14)

γ (z) = β(z)α′(z) − α(z)β ′(z)
2α(z)β(z)

, θ = −δω
√

−2h2t + k1, q = ωt + k2, (B.15)

where α′(z) = dα(z)/dz, β ′(z) = dβ(z)/dz, δ = ±1, ω, k1 and k2 are arbitrary constants.

Case 1.4.

a0 = ±h4ω

2h6

√
−h6α(z)

β(z)
, a1 = 0, a2 = 0, b1 = 0,

b2 = ±2ω

√
−h6α(z)

β(z)
, c1 = 0, c2 = 0, (B.16)

d1 = 0, d2 = 0, h1 = 0, h3 = 0, h5 = 0,

p = δω2

√
4h2 − 3h2

4

2h6

∫
α(z) dz, q = ωt + k2, (B.17)
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γ (z) = β(z)α′(z) − α(z)β ′(z)
2α(z)β(z)

, h3
4 − 4h2h4h6 + 8h0h

2
6 = 0,

θ = −δω

√
4h2 − 3h2

4

2h6
t + k1, (B.18)

where α′(z) = dα(z)/dz, β ′(z) = dβ(z)/dz, δ = ±1, ω, k1 and k2 are arbitrary constants.
From (15), (B.2), (B.5) and case 1.3, we obtain exact solution of equation (B.1):

ψ(z, t) = ω

√
−α(z)

β(z)

[
(∓1 ∓ ε)h2

√
h6 sec2(ξ + ξ0)

h4 + 2ε
√−h2h6 tan(ξ + ξ0)

∓
√

−h2 tan(ξ + ξ0)

]

× exp[i(−δω
√

−2h2t + k1)],

where ξ = δω2
√−2h2

∫
α(z) dz + ωt + k2.

Second, we consider the Tzitzeica–Dodd–Bullough equation [31]:

uxt = eu + e−2u, (B.19)

which plays a significant role in many scientific applications such as solid-state physics,
nonlinear optics and quantum field theory. By making the transformation

v(x, t) = e−u, u(x, t) = arcsinh

[
v−1 − v

2

]
, (B.20)

equation (B.19) becomes

−vvxt + vxvt − v3 − v4 = 0. (B.21)

Balancing vvxt and v4 in equation (B.21), we have n = 2. We assume equation (B.21)
has solution in the form:

v = a0 +
2∑

i=1

{aiφ
−i (ξ ) + biφ

i(ξ) + ciφ
i−1(ξ)φ′(ξ) + diφ

−i (ξ )φ′(ξ)}, (B.22)

where a0 = a0(t), ai = ai(t), bi = bi(t), ci = ci(t), di = di(t)(i = 1, 2), ξ = ξ(x, t).
Substituting equation (B.22) along with equation (3) into equation (B.21), then collecting

the coefficients of φj (ξ)φ′l(ξ )(l = 0, 1; j = ±1,±2, . . .) to zero, we get a set of over-
determined partial differential equations for a0, ai, bi, ci, di and ξ . There are totally 46
equations in the set of over-determined partial differential equations, we omit them here for
convenience. Solving the system of over-determined partial differential equations by use of
Mathematica, we obtain the following results.

Case 2.1.

a0 = −1

2
, a1 = 0, a2 = 0, b1 = ±1

2

√
h4

h2
, b2 = 0,

c1 = 0, c2 = 0, (B.23)

d1 = ±1

2

√
1

h2
, d2 = 0, h0 = 0, h1 = 0, h5 = 0,

h6 = 0, ξ = kx − 1

h2k
t + c, (B.24)

where c is an arbitrary constant, k is a nonzero constant. The sign ‘±’ in b1 and d1 means that
all possible combinations of ‘+’ and ‘−’ can be taken.
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Case 2.2.

a0 = −1

2
, a1 = − 1

4h3kω
, a2 = 0, b1 = 0,

b2 = 0, c1 = 0, (B.25)

c2 = 0, d1 = ±1

2

√−kω, d2 = 0, h0 = − 1

4h2
3k

3ω3
,

h1 = − 3

4h3k2ω2
, (B.26)

h2 = 0, h4 = 0, h5 = 0, h6 = 0, ξ = kx + ωt + c, (B.27)

where c is an arbitrary constant, k and ω are nonzero constants.

Case 2.3.

a0 = −1

2
, a1 = 0, a2 = 0, b1 = 0, b2 = ±

√
−h6kω,

c1 = 0, c2 = 0, (B.28)

d1 = ±√−kω, d2 = 0, h1 = 0, h3 = 0, h5 = 0,

h0 = ± (1 + 4h2kω)
√−h6kω

16h6k2ω2
, (B.29)

(
h2 +

1

4kω

) (
h2 − 3h6 ± 4h4

√−h6kω

4h6kω

)
= 0, ξ = kx + ωt + c, (B.30)

where c is an arbitrary constant, k and ω are nonzero constants. The sign ‘±’ in b2 and d1

means that all possible combinations of ‘+’ and ‘−’ can be taken. If ‘+’ is used in b2, then ‘+’
must be used in h0 and (B.30). If ‘−’ is used in b2, then ‘−’ must be used in h0 and (B.30).
Hereafter, the sign ‘±’ always stands for this meaning in the similar circumstances.

If we use case 2.3 with h0 �= 0 to search for solution of equation (B.19), then from
equations (B.29) and (B.30) and the relation of the values of h0 and h6 in case I, which reads

h0 = 8h2
2

27h4
, h6 = h2

4

4h2
, (B.31)

we obtain

h2 = − 9

4kω
, (B.32)

and the condition that if ‘+’ is used in equation (B.30) then h4 < 0, if ‘−’ is used in
equation (B.30) then h4 > 0.

From equations (B.29) and (B.32), we get h2 > 0 which leads to h4 < 0 if we use
case I. Thus, from equations (10), (B.20), (B.22) and (B.32) we obtain exact solution of
equation (B.19):

u(x, t) = arcsinh

[
v−1 − v

2

]
,
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with

v = −1

2
−

cot2
(

ε
2

√
− 3

kω
(ξ + ξ0)

)
3 − cot

(
ε
2

√
− 3

kω
(ξ + ξ0)

)2

∓
3
√

3ε sin
(
ε

√
− 3

kω
(ξ + ξ0)

)[
3 − cot2

(
ε
2

√
− 3

kω
(ξ + ξ0)

)]
4 cot2

(
ε
2

√
− 3

kω
(ξ + ξ0)

)[
1 − 2 cos

(
ε

√
− 3

kω
(ξ + ξ0)

)]2
,

where ξ = kx + ωt + c.
If we use case 2.3 with h0 = 0 to obtain the solution of equation (B.19), then we get

h2 = − 1

4kω
. (B.33)

From equations (13), (B.20), (B.22), (B.33) and case 2.3, we obtain exact solution of
equation (B.19):

u(x, t) = arcsinh

[
v−1 − v

2

]
,

with

v = −1

2
+

(±1 ± ε)
√

h6 sech2
(

1
2

√
− 1

kω
(ξ + ξ0)

)
4
[
h4

√−kω − ε
√

h6 tanh
(

1
2

√
− 1

kω
(ξ + ξ0)

)] ∓ 1

2
tanh

(
1

2

√
− 1

kω
(ξ + ξ0)

)
,

where ξ = kx + ωt + c.
Third, for the sine-Gordon equation [28]:

uxt = sin u, (B.34)

which arises classically in the study of differential geometry in mathematics and arises in the
study of Josephson junctions, models of particle physics, stability of fluid motions in physics.
We make the following transformation

v(x, t) = sin
[

1
2u(x, t)], u(x, t) = 2 arcsin[v(x, t)

]
, (B.35)

then equation (B.34) becomes

v2vxt + vxt − vvxvt − v + 2v3 − v5 = 0. (B.36)

Balancing v2vxt and v5 in equation (B.36), we have n = 2. We assume equation (B.36)
has solution in the form:

v = a0 +
2∑

i=1

{aiφ
−i (ξ ) + biφ

i(ξ) + ciφ
i−1(ξ)φ′(ξ) + diφ

−i (ξ )φ′(ξ)}, (B.37)

where a0 = a0(t), ai = ai(t), bi = bi(t), ci = ci(t), di = di(t)(i = 1, 2), ξ = ξ(x, t).
By the same manipulation as illustrated above, we obtain the following results.

Case 3.1.

a0 = ±1, a1 = 0, a2 = 0, b1 = ±2

√
h4

h2
, b2 = 0, c1 = 0,

c2 = 0, d1 = 0, (B.38)

d2 = 0, h0 = 0, h1 = 0, h5 = 0, h6 = 0, h2
3 − 4h2h4 = 0,

ξ = kx − 4

h2k
t + c, (B.39)

where k is a nonzero constant, c is an arbitrary constant.
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Case 3.2.

a0 = 0, a1 = 0, a2 = 0, b1 = 0, b2 = 0, c1 = 0, c2 = 0,

(B.40)

d1 = ±√−kω, d2 = 0, h1 = 0, h3 = 0, h5 = 0, h6 = 0,

ξ = kx + ωt + c, (B.41)

where c is an arbitrary constant, k and ω are nonzero constants which are determined by

1 + 2h2kω + h2
2k

2ω2 − 4h0h4k
2ω2 = 0. (B.42)

Case 3.3.

a0 = ±1, a1 = ±4h0

h1
, a2 = 0, b1 = 0, b2 = 0, c1 = 0,

c2 = 0, d1 = 0, (B.43)

d2 = 0, h2 = 0, h4 = 0, h5 = 0, h6 = 0, h3
1 + 8h2

0h3 = 0,

ξ = kx − 16h0

h2
1k

t + c, (B.44)

where c is an arbitrary constant, k is a nonzero constant.

Case 3.4.

a0 = ±
√

5

5
, a1 = ±4

√
5h0

5h1
, a2 = 0, b1 = 0, b2 = 0, c1 = 0,

c2 = 0, d1 = 0, (B.45)

d2 = 0, h2 = 0, h4 = 0, h5 = 0, h6 = 0, h3
1 + 8h2

0h3 = 0,

ξ = kx − 16h0

5h2
1k

t + c, (B.46)

where c is an arbitrary constant, k is a nonzero constant.

Case 3.5.

a0 = 0, a1 = 0, a2 = 0, b1 = 0, b2 = ±
√

h6

h2
,

c1 = 0, c2 = 0, (B.47)

d1 = ±
√

1

h2
, d2 = 0, h0 = 0, h1 = 0, h3 = 0, h5 = 0,

ξ = kx − 1

h2k
t + c, (B.48)

where c is an arbitrary constant, k is a nonzero constant.
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Case 3.6.

a0 = ±1, a1 = 0, a2 = 0, b1 = 0, b2 = ±2

√
h6

h2
, c1 = 0,

c2 = 0, d1 = 0, (B.49)

d2 = 0, h0 = 0, h1 = 0, h3 = 0, h5 = 0, h2
4 − 4h2h6 = 0,

ξ = kx − 1

h2k
t + c, (B.50)

where c is an arbitrary constant, k is a nonzero constant.
From equations (14), (B.35), (B.37) and case 3.5, we obtain exact solution of

equation (B.34):

u(x, t) = 2 arcsin

{
(±1 ± ε)

√
h2h6 csch2(

√
h2(ξ + ξ0))

h2 + 2ε
√

h2h6 coth(
√

h2(ξ + ξ0))]
∓ coth(

√
h2(ξ + ξ0))

}
,

where ξ = kx − 1
h2k

t + c.
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